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Abstract

Learning effective visuomotor policies for robotic manipulation is challenging, as
it requires generating precise actions while maintaining computational efficiency.
Existing methods remain unsatisfactory due to inherent limitations in the essential
action representation and the basic network architectures. We observe that repre-
senting actions in the frequency domain captures the structured nature of motion
more effectively: low-frequency components reflect global movement patterns,
while high-frequency components encode fine local details. Additionally, robotic
manipulation tasks of varying complexity demand different levels of modeling
precision across these frequency bands. Motivated by this, we propose a novel
paradigm for visuomotor policy learning that progressively models hierarchical
frequency components. To further enhance precision, we introduce continuous
latent representations that maintain smoothness and continuity in the action space.
Extensive experiments across diverse 2D and 3D robotic manipulation benchmarks
demonstrate that our approach outperforms existing methods in both accuracy
and efficiency, showcasing the potential of a frequency-domain autoregressive
framework with continuous tokens for generalized robotic manipulation.

1 Introduction

The study of visuomotor policies enable robots to learn task execution from demonstrations by
leveraging raw visual inputs, such as images or point clouds, allowing them to generate effective
action sequences in response to new visual observations. It has become a prevailing paradigm in robot
manipulation [10]. However the requirement of high precision in robotic tasks and the sequential
correlation in action space present challenges for visuomotor policy learning.

Existing methods for visuomotor policy learning can be broadly categorized into diffusion-based
methods [10, 48, 38, 42, 47, 15, 43, 39] and autoregressive (AR) methods [13, 16, 49]. Diffusion-
based approaches model the action distribution conditioned on observations, leveraging their powerful
generative capabilities to produce reliable and diverse action sequences even from limited demon-
strations. However, diffusion models typically encounter higher computational costs and increased
inference latency due to their iterative sampling process, which could limit their practicality in
efficiency-sensitive applications. In contrast, AR methods sequentially predict each action step
conditioned on previous actions and current observations. They are generally more computation-
ally efficient and enable faster inference, making them attractive for real-time control scenarios.
Nevertheless, AR approaches may be prone to compounding errors over long horizons, and due to
their common reliance on discrete representations, often struggle to accurately model inherently
continuous action spaces, limiting their ability to capture complex temporal correlation. Despite
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recent advances, both diffusion-based and AR methods share a fundamental limitation: they overlook
the diversity of the action space arising from task complexity and the degrees of freedom in robotic
manipulation. Representing the inherent structured features of different actions is of great significance
for the generalization and robustness of visuomotor policies.
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Figure 1: Action signals recon-
structed in different frequency
domain ranges.

To address these limitations, we rethink the robotic action represen-
tation from a frequency-domain perspective. Figure 1 shows one
example of the action signals (from Adroit Door [30]) reconstructed
by filtering different frequency bands. We can see that the first 30%
of frequency bands is already sufficient to allows us to reconstruct a
signal nearly identical to the original, preserving 95% of its energy.
Retaining just the first 10% of bands can recover the general trend
of the signal. Incorporating high-frequency information, up to the
first 60% of frequency bands, enables the restoration of finer details,
such as subtle oscillations. Meanwhile, through extensive statistical
analysis of robot task execution behaviors, we found the required
frequency components vary depending on the complexity of differ-
ent tasks. For simple tasks, such as pick-and-place, low-frequency
information is often sufficient, and high-frequency signals may be
redundant, especially the collection of demonstrations in real world can introduce noise or unnatural
jitter. Filtering out these components results in smoother, more natural actions. However, for complex
tasks such as dexterous manipulation, high-frequency details are essential for precise control. In
summary, for continuous action spaces, investigating hierarchical frequency-domain information
and developing effective representation and modeling methods for spectral features are crucial for
enabling robots to perform tasks with varying complexity levels.

With this observation, we propose to learn the visuomotor policies based on the modeling of hierar-
chical frequency domains. Notably, low-frequency information is easier to learn and captures the
global structure of the motion. Rather than producing the entire frequency spectrum at once, we
adopt a multi-stage progressive approach, starting from low-frequency representations and gradually
extending to full-spectrum actions. This corse-to-fine generation process not only simplifies the
modeling complexity of sophisticated actions but also provides low-frequency actions with protection
from high-frequency noise, ensuring stability in the fundamental motion structure. Autoregressive
(AR) paradigm, with their sequential modeling capabilities, are inherently well-suited to implement
this coarse-to-fine generation paradigm, effectively capturing hierarchical dependencies between
frequency domains. However, previous AR-based methods [29] usually discretize the inherently
continuous action space, resulting in significant information loss. Recent study [19] also suggests
that discretization of originally continuous spaces is not necessary for AR modeling, and diffusion
models can better representing continuous probability distributions. Motivated by these insights, we
propose a coarse-to-fine robotic action generation paradigm, FreqPolicy, that combines continuous
action representations with AR modeling in the frequency domain.

To be specific, our approach utilizes the Discrete Cosine Transform (DCT) [18] to convert action
sequences into frequency components. Leveraging a masked encoder-decoder architecture, we map
trajectories from various frequency bands into distinct latent codes. It predicts refined motions
progressively, where low-frequency signals guide the generation of high-frequency details. Our
framework bridges the gap between hierarchical frequency representations and probabilistic modeling,
offering a unified and scalable solution for visuomotor policy learning. Extensive experiments show
that our method yields significant improvements on challenging robotic manipulation benchmarks,
demonstrating both its efficiency and state-of-the-art performance for generating precise and high-
fidelity actions. In summary, our contributions are as follows:

• We have explored frequency-based action space representation and propose a novel solution
for effective visuomotor policy learning by progressively modeling hierarchical frequency
components to capture the structured nature of robotic motions.

• We introduce continuous latent representations with diffusion-based decoding, eliminating
discretization requirements while preserving action space continuity and autoregressive
efficiency.

• Our method achieves state-of-the-art performance on extensive robotic benchmarks, signifi-
cantly outperforming others in both success rate and computational efficiency.
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2 Related Work

2.1 Action Representations for robots

Action representation is important in robotic learning, as it determines how agents encode and
generate behaviors in complex environments. Recently, transformers have achieved remarkable
success in large language models (LLMs)[8, 1, 36], demonstrating exceptional versatility in sequence
generation tasks. At the same time, diffusion models have shown strong generative capabilities for
images[17, 44] and have garnered significant attention for their adaptation to robotic policies [10, 48].
The advancements in transformer and diffusion models have given rise to two primary paradigms
for action representation: discrete and continuous. Transformer models typically employ discrete
tokenization, encoding actions as sequences of tokens. In robotic tasks, discretization can be realized
through straightforward quantization of each action dimension at every timestep [7, 6] or clustering
approaches such as BeT [32], which enable the generation of diverse behaviors but may sacrifice
fine-grained control.

In contrast, diffusion models and other continuous approaches [33, 41, 10, 48, 50, 14] leverage
probabilistic frameworks—such as VAEs, diffusion processes, and normalizing flows—to model the
action space directly. These methods preserve the full expressiveness and precision of the original
action space, avoiding the loss of nuance that can result from discretization. However, this advantage
often comes at the cost of increased computational complexity, particularly in high-dimensional
settings.

Recently, frequency-domain strategies have been explored to address redundancy in both images [28,
20, 45] and action spaces. FAST [29] demonstrates that excessive high-frequency information in
action sequences can hinder model training, and propose a compression-based tokenization scheme
that reduce redundancy in action signals and improves training efficiency. However, both frequency-
domain compression and action discretization inevitably cause information loss, which limit fine-
grained, precise synthesis. In this work, we combine frequency-domain action representation with
continuous sequence modeling. Our approach enables flexible transitions between spatial and
frequency domains, preserving critical details for high-fidelity motion while maintaining efficiency,
thus supporting more expressive and scalable robotic policy learning.

2.2 Visuomotor Policy for Robotic Manipulation

Visuomotor policies for robotic manipulation map visual inputs directly to control actions, enabling
robots to interact with their environments in a closed feedback loop. Broadly, there are two main
approaches to tackling this problem: one is to use diffusion based methods, and the other is to employ
autoregressive methods. Diffusion-based methods typically generate action segments by modeling
the conditional distribution of actions given observations using diffusion models [10, 48, 38, 42].
Autoregressive methods generate action sequences step-by-step, predicting each action based on
previous outputs [21, 13, 49, 40]. While this approach is efficient, it often lacks long-horizon structural
modeling. Recently, several coarse-to-fine methods have been proposed, but they primarily operate in
the temporal domain. CARP [16] incorporates multi-scale reconstruction from VAR [35] for action
generation, but depends on discrete representations derived from VQ-VAE [37], which limits precision.
DensePolicy [34] introduces a bidirectional, BERT-inspired [11] framework for hierarchical, coarse-
to-fine action prediction. However, its iterative refinement relies on progressively increasing temporal
upsampling density, which does not remove high-frequency noise or compress redundant information
in action signals. Unlike previous methods, our approach performs AR generation in the frequency
domain, modeling signals at different frequencies independently. This separation prevents low-
frequency components from being affected by high-frequency noise. Moreover, for high-dimensional
and complex tasks, progressively learning high-frequency signals from low-frequency components
eases the challenge of direct generation.

3 Method

3.1 Overview

Problem Formulation Given a dataset of paired sequences D = (o,x), where each o =
[o1, . . . , oN ]T denotes a sequence of observations (e.g., RGB images, depth maps, or point clouds)
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Figure 2: Pipeline of FreqPolicy showing both training (a) and inference (b) procedures. We
first transforms action trajectories into the frequency domain via DCT, and then learns latent codes
for different frequency level actions using FreqPolicy, and reconstructs actions through masked
prediction and a diffusion-based decoder. This enables robust, frequency-aware, and high-fidelity
robotic action generation.

and each x = [x1, x2, . . . , xN ]T represents the corresponding sequence of robot actions, our objec-
tive is to train a policy that can produce action trajectories x̂ based on new observation sequences ô
to effectively perform the demonstrated tasks.

As shown in Figure 2, our method first transforms action trajectories into the frequency domain
using the Discrete Cosine Transform (DCT), decomposing them into frequency components. These
trajectories are then recovered by Inverse DCT but mask partial frequency components, and a
FreqPolicy encoder maps the recovered trajectories, along with conditional embeddings and index
information, into latent codes corresponding to different frequency levels. Then the FreqPolicy
decoder reconstructs the masked frequency components from their latent representations, ensuring
that key frequency components are selectively preserved or predicted. To further enhance generative
modeling, we introduce a diffusion-based decoder that takes as input the trajectory latent code,
frequency index, and condition embeddings, and generates refined trajectories by minimizing diffusion
loss. This approach enables the model to learn robust, frequency-aware representations and generate
high-fidelity robotic actions by leveraging both global structure and fine-grained motion details
across different frequency domains. This section is organized as follows. We begin with an analysis
of action trajectories in the frequency domain, followed by an introduction to the space-frequency
transformation method employed in our approach. Then, we describe how to integrate frequency-
aware action encoding with continuous tokens. Finally, we present FreqPolicy, a novel frequency-
domain autoregressive framework illustrated in Figure 2.

3.2 Frequency Domain Analysis

To motivate our approach, we first conduct a systematic analysis of action trajectories under various
task conditions. We selected two representative benchmarks to evaluate our approach. For complex
manipulation tasks, we chose three tasks from the Adroit Benchmark [30], which utilizes a dexter-
ous robotic hand with 26 degrees of freedom. For simpler tasks, we selected three tasks from the
Robomimic Benchmark [23], which features parallel grippers with only 10 degrees of freedom. On
these tasks, we aim to analyze the energy distribution of each action dimension of the robotic arm
across different frequency bands, as well as to investigate the impact of discarding high-frequency
signals on task performance.
Energy Distribution. We present the energy heat maps for these tasks in Figure 3(a), where the
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Figure 3: (a) Heat maps of frequency band energy across action dimensions for different tasks.
The top row shows Adroit [30] tasks with high-dimensional actions (26 dimensions), while the bottom
row presents Robomimic [23] tasks with low-dimensional actions (10 dimensions). (b) Success rate
of actions reconstructed with varying frequency ratios. We reconstruct action sequences using
different proportions of frequency components and evaluate their success rates on the original tasks.

vertical axis represents different dimensions of the action space, corresponding to the joint angles of
the robotic hand or arm, and the horizontal axis indicates the energy ratio across different frequency
bands. The red regions indicate areas with a high energy ratio, suggesting that these frequency bands
contain a greater proportion of the signal’s energy. Conversely, the blue regions represent areas
with a low energy ratio. In both the Adroit tasks (top row) and the Robomimic tasks (bottom row),
most of the energy is concentrated in the 0–10% low-frequency bands (leftmost columns), which
is why these regions appear red. By comparing the heat map for tasks in different action space,
we found that tasks with high-dimensional actions show greater variance in the energy distribution
compared to low-dimensional tasks. Specifically, the energy distribution of the action space in the
Adroit Benchmark shows distinct low-frequency (0-10%) patterns across its three tasks, while in the
Robomimic tasks, the low-frequency (0-10%) energy distribution remains relatively uniform with
little variation among the three tasks.
Performance under Frequency Compression. To further assess the role of high-frequency infor-
mation on task performance across different benchmarks, we compress action signals by removing
the high-frequency components from the original sequences, reconstructed the actions with varying
proportions of low-frequency information, and measured their success rates on the original tasks. The
results, shown in Figure 3(b), indicate that omitting high-frequency signals leads to a significant drop
in success rates for Adroit tasks. In contrast, low-dimensional tasks in Robomimic maintain stable
performance with as little as 12% of low-frequency information preserved. This analysis underscore
the importance of frequency-aware modeling: the necessity of high-frequency signals for effective
action representation varies across different scenarios.
Conclusion. These findings provide the empirical foundation for our frequency-based autoregressive
generation strategy. They suggest that adjusting the granularity of frequency-domain representations
can help optimize model performance for tasks with different levels of complexity. Our goal is to
enable the model to learn individual task skills from expert demonstrations in diverse action spaces
and with varying task complexities. Therefore, we first transform the actions into the frequency
domain and recover them at different frequency scales. This allows the model to predict subsequent
actions using information from lower frequency bands, enabling a coarse-to-fine generation process.

3.3 DCT Decomposition

Our spectral analysis reveals that the proportion of frequency components required for effective
action representation varies across different tasks. Therefore, it is necessary to transform the action
space from the time domain to the frequency domain, for more effective robotic action modeling. To
efficiently achieve this, we employ the Discrete Cosine Transform (DCT), which can project time-
domain trajectories onto a set of cosine basis functions with low computational cost. This provides a
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compact and interpretable frequency-domain representation, enabling hierarchical modeling of actions
in various tasks settings and scenarios. Specifically, given an action sequence x = [x1, x2, . . . , xN ]T

into the frequency domain, its DCT is defined as:

Xi =

N−1∑
n=0

xn cos

[
π

N

(
n+

1

2

)
i

]
, i = 0, 1, . . . , N − 1 (1)

Here, Xi denotes the i-th DCT coefficient. Given any integer k such that 1 ≤ k ≤ N , we refer to
retaining only the first k DCT coefficients as preserving the k-level DCT. With these k coefficients, the
original trajectory can be approximately reconstructed using the inverse DCT, as shown in Equation 2.

ykn =
1

N

[
1

2
X0 +

k−1∑
i=1

Xi cos

(
π

N

(
n+

1

2

)
i

)]
, n = 0, 1, . . . , N − 1 (2)

Specifically, let yk = [yk0 , y
k
2 , . . . , y

k
N−1]

T denote the k-level reconstruction of the original sequence
x. If k = N , meaning all DCT coefficients are used, the reconstruction will recover the original tra-
jectory without any loss of information. However, if k < N , only the lowest k frequency components
are kept, and all higher-frequency components are discarded. As a result, the reconstructed trajectory
yk becomes a compressed and smoother version of the original, preserving the essential structure of
the original sequence while discarding minor fluctuations.

3.4 Continuous Tokens for FreqPolicy

We explore integrating FreqPolicy with continuous token representations using a diffusion model.
Compared to discrete tokens, continuous tokens offer greater expressiveness and enable more fine-
grained modeling of the action space, allowing for smoother and more accurate representation of
complex trajectories. Accurately modeling the probability distribution of each token is essential for
effectively incorporating a continuous tokenizer into autoregressive models. Building on MAR [19],
we tackle this challenge by adopting a diffusion-based loss function for training and devising a
specialized frequency-aware sampling mechanism for efficient inference. Additional details on our
training and inference processes are provided in the appendix.
Training During training, given an action sequence x ∈ RN of length N , we first apply the Discrete
Cosine Transform (DCT) to obtain its frequency coefficients, as defined in Equation 1, and compute
reconstructions at all frequency levels as described in Equation 2. Our objective is to train a model
capable of modeling token distributions across different frequency levels. For an arbitrary frequency
level k, we encode the k-level reconstruction yk, the observation o, and the level index k using
the FreqPolicy encoder to obtain a latent representation. This latent feature is then decoded by the
FreqPolicy decoder to produce a condition vector zk, which serves as a continuous token for yk. We
subsequently model the conditional probability p(x | zk) using a reverse diffusion process, which
allows for conditional generation based on zk to recover the original action sequence. This recovered
sequence can then be further processed with DCT and inverse DCT to obtain reconstructions at any
desired frequency level.
Sampling The sampling procedure follows the standard inference process of diffusion models.
Beginning with initial noise sampled from a standard normal distribution, the diffusion tokenizer
iteratively removes the noise to produce x̂ ∼ p(x | zk). Here, x̂ denotes a trajectory sampled from
the action space of demonstration data with complete frequency components. This enables flexible
reconstructions at various frequency levels, by simply specifying the desired frequency level k.
Diffusion Loss The diffusion tokenizer is optimized using the diffusion loss introduced by [19], as
presented in Equation 3.

L(zk,x) = Eϵ,t

[∣∣ϵ− εθ(xt | t, zk)
∣∣2] , (3)

where xt is a noise-perturbed version of the original trajectory x, ϵ is a noise vector sampled from
N (0, I), and εθ is a small MLP parameterized by θ that predicts the added noise. Gradients are
propagated through zk, enabling end-to-end optimization of FreqPolicy encoder, decoder and the
noise predictor.
Masked Generative Strategy To reduce training cost and enhance generation diversity, we adopt
the frequency-aware masking mechanism from FAR [45]. Since early autoregressive steps process
information-sparse, low-frequency inputs, using all tokens is redundant. The frequency-aware mask-
ing strategy in FAR [45] applies higher mask ratios at lower-frequency levels, gradually increasing
the number of tokens as higher-frequency information is incorporated.
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Table 1: Comparison on 10 simulation tasks in Adroit, DexArt and Meta-World. To ensure
fair comparison, all tasks employ full-spectrum outputs and identical frequency level progression. *
denotes results we reproduced using the same expert demonstrations as ours.

Adroit [30] DexArt [4] Meta-World [46] AverageAlg \ Task Hammer Door Pen Laptop Faucet Toilet Bucket Assembly Disassemble Stick Push

Diffusion Policy 45±5 37±2 13±2 69±4 23±8 58±2 46±1 15±1 43±7 63±3 44.0
DP3 100±0 62±4 43±6 83±1 63±2 82±4 46±2 99±1 69±4 97±4 74.4
Mamba Policy 100±0 68±1 41±2 80±4 33±2 76±0 27±1 100±0 76±4 100±0 70.1

DP3* 100±0 53±2 50±5 83±3 33±2 70±6 24±4 95±3 87±3 83±3 67.8
Mamba Policy* 100±0 59±3 55±2 79±3 35±6 65±5 23±2 96±2 90±2 82±5 68.4
ours(w/o DCT) 100±0 51±5 47±3 55±6 23±2 45±5 30±3 95±0 88±3 80±3 61.4
ours 100±0 65±5 59±5 85±4 30±3 77±3 25±3 97±2 92±6 85±5 71.5

3.5 Frequency-based Hierarchical Generation

Our previous analysis demonstrated that compressing actions in the frequency domain at different
scales reveals hierarchical information. Actions reconstructed with higher compression ratio are
smoother and better capture the overall trends of the motion, which helps reduce noise interference
and lowers the difficulty of generation. Based on this observation, we propose a frequency-based
autoregressive strategy for hierarchical action generation. As illustrated in Figure 2. Starting from
zero input, we iterate from low to high frequencies Niter times to generate the action sequence. In each
iter i ∈ {1, 2, ..., Niter}, the observation tokens, the frequency level index li−1 ∈ {l0, l1, ..., lNiter}, and
the corresponding li−1 level reconstruction action tokens yli−1 are encoded to produce a continuous
token zli−1 that represents the current context. The diffusion model then samples a full-frequency
action sequence x̂i conditioned on this token. For the next step, we use the li-level reconstruction of
x̂i, i.e., yli , as the input for the following step, which contains richer information than previous input.

This hierarchical generation paradigm first captures the basic trends and global structure of the action
sequence using low-frequency components, and then progressively enriches the output by incorporat-
ing higher-frequency signals that model fine-grained motion details. By explicitly decomposing and
modeling motions at different frequency levels, our approach allows the model to better learn and
represent both global dynamics and subtle variations in complex action sequences. This structured
frequency decomposition, combined with autoregressive conditioning, enables more efficient and
expressive generation of diverse and realistic motions.

4 Experiments

This section provides a comprehensive evaluation of our proposed method. We first describe the
experimental setup, including benchmarks, baseline methods, and implementation details. Next, we
analyze the frequency domain requirements of different tasks and highlight their unique characteristics.
We then compare our method in both the time and frequency domains. Additionally, we benchmark
our approach against autoregressive methods with continuous and discrete token representations
across various simulation benchmarks, and present results from real-world applications. Finally, we
discuss the inference speed and ablation in sampling.

4.1 Experimental Setup

Benchmarks. We evaluate our methods on a diverse set of benchmarks that provide different types
of observation data. Benchmarks with only 2D image observations are referred to as 2D tasks, which
include two single-task benchmarks, Robomimic [23] and Push T [12]. Benchmarks with 3D visual
observations are referred to as 3D tasks, consisting of Adroit [30], DexArt [4], MetaWorld [46], and
RobTwin [26], which together cover a wide range of robotic manipulation and dual-arm collaborative
tasks. Tasks in DexArt are conducted using Allegro Hand [3] with 22 DoF, tasks in Adroit use
ShadowHand [31] with 26-28 DoF, and tasks in RoboTwin using dual-arm grippers [2] with 14 DoF.
Other tasks use parallel grippers with 10 DoF.
Baseline. For 2D tasks, we compare against Diffusion Policy (DP) as well as two autoregressive
approaches using discrete token representation: Behavior Transformer (BeT) [32] and CARP [16].
DP is available in two variants: CNN-based (DP-C) and Transformer-based (DP-T). For 3D tasks,
we use 3D Diffusion Policy (DP3) [48] and Mamba Policy [9] as baselines.
Implementation Details. Our model can be seamlessly integrated into the codebases of Diffusion
Policy (DP) and 3D Diffusion Policy (DP3). To ensure fair comparisons, we use the same parameters
and observation input processing as Diffusion Policy for the 2D tasks, and as 3D Diffusion Policy
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for the 3D tasks, maintaining consistency with their respective frameworks. Our approach enables
flexible adjustment of autoregressive iteration counts in the frequency domain during inference. For
all simulation experiments, we use 4 iterations, whereas for real-world experiments, only 1 iteration
is used.

4.2 Simulation Result

High Success Rate. In Table 1, we compare our method on 10 tasks from Adroit, DexArt, and Meta-
World, while Table 3 presents results on 7 RoboTwin tasks using colored point clouds as observations.
In Table 1, our method outperforms both the state-of-the-art (SOTA) methods and a baseline (our
codebase without DCT composition) on 8 tasks, and achieves comparable results on the remaining 2.
Similarly, as shown in Table 3, our method achieves superior performance in RoboTwin, with 5 tasks
reaching higher success rates than DP and DP3. We also evaluated all 48 tasks in Adroit, DexArt,
and MetaWorld and reported the average success rate for each benchmark. As shown in Table 2),
our approach maintains an average success rate of 67.9%, surpassing Diffusion Policy 3D (64.6%)
and Mamba Policy (65.8%). These results demonstrate the effectiveness of our approach across a
variety of task settings and scenarios. More detailed results for each individual task are provided in
the appendix.
Generalization Ability Results in Table 4 demonstrate that our method achieves consistently strong
performance in unseen DexArt test environments, maintaining high success rates under both limited
(10 demonstrations) and abundant (100 demonstrations) data settings. These results demonstrate the
method’s robustness and generalization ability in diverse scenarios.
Discrete vs Continuous As shown in Table 5, our systematic comparison between discrete autore-
gressive and continuous diffusion models reveals a key finding: discrete representation methods
(CARP, BeT) exhibit significant limitations in modeling continuous action spaces, primarily due to
information loss during the discretization process, particularly evident in hard tasks requiring precise
control. In contrast, our proposed approach that integrates autoregressive and diffusion mechanisms
in a continuous representation framework not only maintains consistent high performance across
various tasks, but also inherits the computational efficiency advantages of autoregressive methods
(requiring only 1/10 of DP’s inference time), conclusively demonstrating its superior expressiveness,
computational efficiency, and environmental adaptability in modeling continuous action spaces.
Inference Efficiency. As shown in Table 5, our continuous token AR method with integrated dif-
fusion mechanisms achieves an order of magnitude faster inference (0.21s vs. 2.11s) compared to
diffusion policy while maintaining comparable success rates on the Robomimic benchmark.

Table 2: Main results on 48 simulation tasks. Averaged over tasks,* denotes results we reproduced
using the same expert demonstrations, for fair comparison.Success rates for individual tasks are in
Appendix.

Adroit DexArt MetaWorld MetaWorld MetaWorld MetaWorld AverageAlgorithm \ Task (3) (4) Easy (20) Medium (11) Hard (5) Very Hard (5)

DP3 68.3 68.5 91.7 61.6 38.0 49.0 62.9±16.9

Diffusion Policy 31.7 49.0 86.8 31.1 10.8 26.6 39.3±23.9

DP3* 67.7 52.5 89.9 66.8 42.8 68.0 64.6±14.7

Mamba Policy* 71.3 50.5 90.2 67.4 46.4 69.0 65.8±14.4

ours 74.7 54.3 92.4 67.4 48.8 70.2 67.9±14.2

Table 3: Comparison on the RoboTwin Benchmark for Dual-Arm Manipulation with D435
Camera Setting. We evaluated our approach on 7 tasks using 20 expert demonstrations and 3 seeds
(0, 1, 2) and report the success rate. Our method was compared against DP3 (XYZ+RGB) and DP, all
tested under the same conditions. Both DP and our method are trained for 500 epochs, while DP3 is
trained for 3,000 epochs.

RoboTwin [26]
Task Block Hammer Beat Block Handover Bottle Adjust Container Place Empty Cup Place Pick Apple Messy Dual Bottles Pick(Hard)

DP 0.0±0.0 0.0±0.0 6.3±5.9 1.7±0.6 0.0±0.0 5.3±2.5 8.0±2.0

DP3(XYZ+RGB) 47.7±4.0 86.0±1.0 25.0±5.0 37.3±2.1 23.7±5.5 6.0±2.6 28.0±4.4

Ours(XYZ+RGB) 42.0±4.2 80.7±9.7 27.7±11.4 39.7±3.3 29.3±9.4 7.0±1.0 30.0±4.2
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Table 4: Generalization Results. Comparison on unseen DexArt test data after 3000 training epochs,
averaged over 100 trials × 3 random seeds.

Alg \ Task 10 Demonstrations 100 Demonstrations
Laptop Faucet Toilet Bucket Laptop Faucet Toilet Bucket

DP3 12.2±2 11.5±3 8.5±1 15.0±3 36.4±5 17.4±2 25.4±1 29.2±6

Mamba Policy 11.9±3 8.7±3 11.2±4 23.6±4 30.9±5 16.6±4 26.8±5 25.9±3

ours 14.5±3 12.4±4 16.6±4 32.3±4 40±3 12.1±3 27.8±3 26.4±4

Table 5: Comparisons on Robomimic benchmark [24] and Push-T task [12].
Tokenizer Model Lift(mh) Can(mh) Square(mh) Transport(mh) Push-T TimeVisual State Visual State Visual State Visual State Visual State

Diffusion Models

Continuous DP-C 1.00/1.00 1.00/0.97 1.00/0.96 1.00/0.96 0.98/0.84 0.97/0.82 0.89/0.69 0.68/0.46 0.91/0.84 0.95/0.91 2.11
DP-T 1.00/0.99 1.00/1.00 1.00/0.98 1.00/0.94 0.94/0.80 0.95/0.81 0.73/0.50 0.62/0.35 0.78/0.66 0.95/0.79 1.35

Autoregressive Models

Discrete BET – 1.00/0.99 – 1.00/0.90 – 0.68/0.43 – 0.21/0.06 – 0.79/0.70 0.007
CARP 0.94/0.90 1.00/0.97 0.74/0.68 0.88/0.85 0.46/0.42 0.44/0.37 0.00/0.00 0.00/0.00 0.88/0.83 0.85/0.83 0.09

Continuous Ours 1.00/1.00 1.00/0.98 0.98/0.94 1.00/0.90 0.84/0.78 0.88/0.74 0.58/0.50 0.50/0.38 0.82/0.76 0.92/0.85 0.21

Figure 4: Pareto Analysis on
Adroit benchmark. The x-
axis represents inference time
and the y-axis indicates task
success rate.

Flexible Sampling. Our method allows flexible selection of the
number of autoregressive iterations in the frequency domain during
inference. We evaluated the impact of different iteration counts on
task success rates and inference times on the Adroit benchmark,
and provide a Pareto frontier visualization [22] in Figure 4, which
displays the tradeoff between inference time and success rate, meth-
ods closer to the top-left corner achieve better trade-offs between
efficiency and performance. It shows that our method maintaining
competitive performance even at minimal iterations.

4.3 Real-World Result

To validate our method in real-world applications, we collected
demonstration data for an object handover task using the teleopera-
tion system of the ShadowHand [31]. In this setup, a human subject
holds an object, and the robot is required to stably receive it. The
dynamic interactions between the hand and object necessitate high inference speed for real-time
responsiveness. Our real-world tests, conducted on an RTX 4090 GPU, show that our single-iteration
implementation achieves 70 FPS, significantly outperforming DP3’s 25 FPS. As illustrated in Figure 5,
our robotic hand successfully receives the object from the human subject. These results demonstrate
the practical advantages of our method for real-time robotic control applications with strict temporal
constraints. Additional experimental details for real-world scenarios are provided in the appendix.

Figure 5: Real-World Experiments on Robotic Handover Task.The robotic hand stably receives
an object from a human subject during real-world testing.

5 Conclusion

In this paper, we introduced FreqPolicy, a novel visuomotor policy framework leveraging hierarchical
frequency-domain representations and continuous tokens for effective robotic manipulation. By
decomposing action signals into frequency components using DCT, our method allows for flexible
reconstruction of actions under different levels of action details. By integrating continuous latent
representations with an autoregressive paradigm, our method enables precise and efficient modeling of
action spaces via coarse-to-fine generation, eliminating discretization losses. Extensive experiments
demonstrate that our approach achieves state-of-the-art performance, outperforming existing methods
in both success rate and computational efficiency. In future work, we plan to extend our research
to the VLA framework, further exploring how frequency domain representations influence action
spaces in multi-task training environments.
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Appendix

This document contains supplementary materials for our main paper. We provide further technical
details, additional experimental results, and more qualitative examples to complement the findings
presented in the main text. We hope this supplementary information will help readers better understand
our approach and results.

The remainder of this supplementary material is organized as follows. In Section A, we provide the
hardware specifications used in our experiments. In Section B, we list the hyperparameters employed.
Section C presents the detailed algorithms for training and inference. In Section D, we describe the
ablation studies conducted. Section E outlines the details of our real-world experiments. In Section F,
we offer further discussion on VLA models and frequency domain analysis. Finally, in Section G, we
discuss the limitations of our approach.

A Computational Resources

To ensure reproducibility, we provide detailed information on the computational resources used in
our experiments. For all simulation environment experiments including training, inference, and time
benchmarking tests, we used NVIDIA RTX 2080Ti GPUs. Our model has 63M parameters, with DP3
at 255M, consuming approximately 4.5GB of memory during operation.For real-world environment
experiments, we employed NVIDIA RTX 4090 GPUs for training, inference, and time benchmarking
tests.

B Hyperparameters

In Table 6, we present the hyperparameters used in our experiments. For the baseline methods DP
and DP3, we use their default hyperparameters. For the Adroit, DexArt, and MetaWorld benchmarks,
our models are trained for 3,000 epochs. For the Robomimic and Push-T tasks, we use 1,000 training
epochs, and for the RoboTwin benchmark, our models are trained for 500 epochs.

Table 6: Hyperparameters used for various benchmark.
Hyperparameter Value
Horizon (Th) 16 (8 for RoboTwin)
Action step (Ta) 8 (6 for RoboTwin)
Observation step (To) 2 (3 for RoboTwin)
point_feature_dim 64
state_mlp_size 64
Batchsize 128
Num_iter 4
Num_training_steps(Diffusion training) 100
Num_sampling_steps(Diffusion sampling) ddim10
Diffloss_d 3
Diffloss_w 1024
encoder_embed_dim 512
decoder_embed_dim 512
encoder_depth 4
decoder_depth 4
encoder_num_heads 8
decoder_num_heads 8
Optimizer AdamW
Betas (β1, β2) [0.95, 0.999]
Learning Rate 1.0e-4
Weight Decay 1.0e-6
Learning Rate Scheduler Cosine
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C Training and Inference Details

The training process for our FreqPolicy is outlined in Algorithm 1. At each epoch, we first encode
the input observations using an observation encoder. The ground truth action sequence is then
transformed into the frequency domain via the Discrete Cosine Transform (DCT), and a frequency
index is randomly sampled. Conditional reconstruction is performed by applying the inverse DCT
up to the sampled frequency level, enabling the model to focus on different frequency components
during training. An adaptive mask ratio is determined based on the frequency index, and a mask
is sampled accordingly. The masked observation and conditional reconstruction are then encoded
and subsequently decoded by the FreqPolicy encoder and decoder, respectively. The diffusion
model is trained to predict noise added to the actions at randomly sampled diffusion steps, using a
standard mean squared error loss. Model parameters are updated by minimizing this loss throughout
the training epochs. This procedure effectively leverages masked autoregressive modeling and
diffusion-based generation, enabling the policy to learn robust representations across the frequency
domain.

Algorithm 1 FreqPolicy Training

Require: Number of training epochs K, Observation Encoder Eobs, FreqPolicy Encoder E , FreqPol-
icy Decoder D, diffusion model ϵθ, Observation O, Ground truth action x, Horizon T , diffusion
steps Tdiff , initial mask ratio m.

1: for e = 1 to K do
2: zobs ← Eobs(O) ▷ Encode observations
3: {X0, X1, . . . , XT−1} ← DCT(x), k ∼ U(0, T ) ▷ Apply DCT, sample index

4: yk ←
{

IDCT({X0, X1, . . . , Xk−1}) if k > 0

0 if k = 0
▷ Extract k-level reconstruction

5: mask_ratio← m · (1− k/T ) ▷ Adaptive mask ratio
6: mask ∼ TruncNorm(mask_ratio)
7: zmask ← E(zobs, yk, k,mask) ▷ Encode with mask
8: zk ← D(zobs, zmask, k,mask) ▷ Decode with mask
9: t ∼ U(1, Tdiff ), ϵ ∼ N (0, I)

10: xt ←
√
ᾱtx+

√
1− ᾱtϵ

11: L ← Eϵ,t[∥ϵ− ϵθ(xt, t, k, z
k)∥2] ▷ Diffusion loss

12: Update model parameters by minimizing L
13: end for
14: return Trained models Eobs, E , D, and ϵθ

The inference process for FreqPolicy is detailed in Algorithm 2. Given an input observation, we
first encode it using the observation encoder. The action tokens are initialized to zeros and are fully
masked at the beginning. For each iteration, the model progressively predicts actions at increasing
frequency levels, guided by the current frequency index.

At each step k, the partially reconstructed tokens and the current mask are passed through the encoder
and decoder to obtain the continuous latent code zk. The diffusion sampler then generates an updated
action prediction conditioned on zk. If it is not the final step, the predicted actions are transformed
into the frequency domain using the Discrete Cosine Transform (DCT), and the reconstruction is
refined up to the next frequency level via inverse DCT. The masking ratio is adaptively reduced at
each iteration, gradually revealing more of the reconstructed action sequence. This process continues
until the entire action sequence is fully reconstructed. By progressively incorporating information
across different frequency bands, our inference procedure enables the policy to generate high-fidelity
predictions.

D Ablation

To verify the effectiveness of our proposed method and the contribution of each component, we
conducted a series of ablation experiments.

The results in Table 7 present the ablation study on the prediction horizon, it shows that the perfor-
mance is not sensitive to this parameter, demonstrating the robustness of our method. When Th = 8
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Algorithm 2 FreqPolicy Inference

Require: Observation Encoder Eobs, FreqPolicy Encoder E , FreqPolicy Decoder D, DiffusionSam-
pler F , diffusion steps Tdiff , Observation O, Horizon T , Number of iterations Niter, Frequency
indices {i0, i1, . . . , iNiter−1}.

1: Initialize:
2: mask← 1B×T ▷ Full masking initially
3: tokens← 0B×T×Daction

▷ Zero initialization
4: zobs ← Eobs(O) ▷ Encode observations
5: for step = 0 to Niter − 1 do
6: k ← istep ▷ Current frequency index
7: zmask ← E(zobs, tokens, k,mask)
8: zk ← D(zobs, zmask, k,mask)
9: x̂← F(zk, k, Tdiff ) ▷ Generate prediction via diffusion

10: if step < Niter − 1 then
11: {X0, X1, . . . , XT−1} ← DCT(x̂) ▷ Transform to frequency domain
12: next_k← istep+1 ▷ Next frequency level
13: tokens← IDCT({X0, X1, . . . , Xnext_k−1})
14: else
15: tokens← x̂
16: end if
17: mask_ratio← cos

(
π
2 ·

step+1
Niter

)
18: mask← GenerateMask(mask_ratio)
19: end for
20: return tokens ▷ Final action sequence

or Th = 16, the model achieves slightly better performance with an average score over 58 points,
while both smaller and larger horizons yield comparable results. This robustness across a range of
temporal scales highlights the flexibility of our approach. Notably, only at extremely long horizons
(Th = 64) do we observe a noticeable decline in performance.

Table 8 presents the results of the ablation study on masking strategies. Our frequency policy
mask significantly improves performance across all tasks, increasing the average score from 40 to
58—an improvement of approximately 45%. These results clearly demonstrate the importance of the
frequency-based masking strategy for prediction tasks.

Table 7: Ablation study on prediction horizon. Analysis of Horizon (Th), Action step (Ta), and
Observation step (To) .
Th To Ta Hammer Door Pen Pick Out of Hole Soccer Stick Pull Average
4 2 1 65±6 76±3 55±5 37±4 23±4 60±2 53±17

4 2 2 62±4 71±4 53±6 31±3 38±3 64±2 53±14

8 2 4 100±0 68±2 52±4 25±2 38±4 62±0 58±24

8 2 6 100±0 72±4 50±5 29±3 31±2 64±3 58±25

16 2 8 100±0 65±5 59±5 30±2 32±4 62±0 58±23

16 2 12 100±0 59±4 51±3 35±2 35±4 55±5 56±21

32 2 16 98±2 58±5 38±2 34±3 19±2 52±4 50±25

64 2 32 80±4 35±4 42±2 35±5 32±3 38±4 44±17

Table 8: Ablation study on mask. This experiment analyzes the model performance with and
without mask.

Hammer Door Pen Pick Out of Hole Soccer Stick Pull Average
W/o mask 99±1 35±4 31±3 15±0 27±2 34±2 40±27

Freqpolicy 100±0 65±5 59±5 30±2 32±4 62±0 58±23
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Table 9: Main results on 48 simulation tasks.Results for each task are provided in this table.
Meta-World [46] (Easy)

Alg \ Task Button Press Button Press Wall Coffee Button Dial Turn Door Close Reach Wall Door Open Door Unlock Drawer Close Drawer Open

DP3 100±0 99±1 100±0 66±1 100±0 68±3 99±1 100±0 100±0 100±0

Diffusion Policy 99±1 97±3 99±1 63±10 100±0 59±7 98±3 98±3 100±0 93±3

DP3* 100±0 100±0 100±0 58±5 100±0 47±5 100±0 100±0 100±0 100±0

Mamba Policy* 100±0 100±0 100±0 56±4 100±0 50±3 100±0 100±0 100±0 100±0

ours 100±0 100±0 100±0 72±4 100±0 71±4 100±0 100±0 100±0 100±0

Meta-World (Easy)
Alg \ Task Faucet Open Handle Press Lever Pull Plate Slide Plate Slide Back Plate Slide Back Side Plate Slide Side Reach Window Close Window Open

DP3 100±0 100±0 79±8 100±1 99±0 100±0 100±0 24±1 100±0 100±0

Diffusion Policy 100±0 81±4 49±5 83±4 99±0 100±0 100±0 18±2 100±0 100±0

DP3* 100±0 86±5 84±2 100±0 100±0 100±0 100±0 22±4 100±0 100±0

Mamba Policy* 100±0 83±5 74±6 100±0 100±0 100±0 100±0 17±3 100±0 100±0

ours 100±0 90±3 84±4 100±0 100±0 100±0 100±0 30±2 100±0 100±0

Meta-World (Medium)
Alg \ Task Hammer Peg Insert Side Push Wall Soccer Sweep Sweep Into Basketball Bin Picking Box Close Coffee Pull Coffee Push

DP3 76±4 69±7 49±8 18±3 96±3 15±5 98±2 34±30 42±3 87±3 94±3

Diffusion Policy 15±6 34±7 20±3 14±4 18±8 10±4 85±6 15±4 30±5 34±7 67±4

DP3* 80±5 62±5 87±5 22±3 100±0 17±2 100±0 35±10 50±6 95±0 87±5

Mamba Policy* 90±5 63±4 92±2 28±3 95±5 15±3 100±0 26±3 48±10 96±2 89±3

ours 96±1 51±4 97±3 32±4 85±4 19±5 83±8 31±2 56±4 100±0 91±4

Meta-World (Hard) Meta-World (Very Hard)
Alg \ Task Assembly Hand Insert Pick Out of Hole Pick Place Push Shelf Place Disassemble Stick Pull Stick Push Pick Place Wall

DP3 99±1 14±4 14±9 12±4 51±3 17±10 69±4 27±8 97±4 35±8

Diffusion Policy 15±1 9±2 0±0 0±0 30±3 11±3 43±7 11±2 63±3 5±1

DP3* 95±3 11±2 12±7 42±6 54±4 31±4 87±3 57±3 83±3 82±6

Mamba Policy* 96±2 15±3 25±5 36±10 60±4 38±4 90±2 55±2 82±5 80±5

ours 97±2 17±3 30±2 37±4 63±2 27±3 92±6 62±0 85±5 85±3

Adroit [30] DexArt [4] Average (41+3+4)Alg \ Task Hammer Door Pen Laptop Faucet Toilet Bucket

DP3 100±0 62±4 43±6 83±1 63±2 82±4 46±2 71.36
Diffusion Policy 45±5 37±2 13±2 69±4 23±8 58±2 46±1 53.25
DP3* 100±0 53±2 50±5 83±3 33±2 70±6 24±4 72.91
Mamba Policy* 100±0 59±3 55±2 79±3 35±6 65±5 23±2 73.71
ours 100±0 65±5 59±5 85±4 30±3 77±3 25±3 75.54

E Real-world Experiment Details

In real-world experiments, we employ an RGB-D camera (Kinect) to capture environmental point
clouds at a rate of 30 Hz. The FoundationPose model serves as our object pose estimation module,
which processes the point clouds from the RGB-D camera to predict the 6D object pose, achieving a
93.22% ADD AUC score on the YCBInEOAT dataset at 30 FPS. By sampling 4,096 points from the
object’s mesh and applying the estimated pose from FoundationPose, we obtain cleaned object point
clouds for the past 5 frames (T0 = 5).

Figure 6: Additional Visualization of Real-World Experiments on 2 Robotic Handover Tasks.

Our algorithm takes these cleaned object point clouds along with the shadow hand poses from the
previous 5 frames as input conditions, and predicts the hand’s poses for the next 3 frames (Ta = 3).
These predicted poses are executed directly on the physical robot, enabling a fully end-to-end action
generation system. In terms of system performance, the perception module operates at approximately
30 FPS, while the action prediction module achieves over 70 FPS with a single iteration setting. The
complete end-to-end system maintains a comprehensive operating rate of approximately 25 FPS,

17



meeting real-time interaction requirements. Figure 6 shows the results of two additional sets of
handover tasks.

F Discussion

F.1 Further Discussion on Vision-Language-Action (VLA) Models

In the main sections of this paper, we have detailed and validated the superior performance of
FreqPolicy in learning specific robotic manipulation tasks. Its innovative frequency-domain autore-
gressive mechanism and the use of continuous tokens have demonstrated significant advantages in
both precision and efficiency for single-task learning. However, a natural and promising extension
is to investigate the adaptability of FreqPolicy in more complex and generalized multitask learning
scenarios, especially when task instructions are given in natural language. Vision-Language-Action
(VLA) models provide a powerful framework for achieving such language-driven multitask robot
control.

Therefore, this section aims to conduct a preliminary exploration of FreqPolicy’s potential when
applied to VLA models. Given that policy learning in multitask environments is still a multifaceted
and challenging research problem, we do not aim to provide a solution here. Instead, our goal is to
assess FreqPolicy on a multitask benchmark and to provide a forward-looking discussion on whether
the core ideas of FreqPolicy, such as frequency-domain decomposition and hierarchical learning, can
benefit VLA models. We also outline possible directions for future research. We believe that this
discussion can help to provide a more comprehensive understanding of FreqPolicy’s potential and its
future development.

Multitask Benchmark. To preliminarily assess FreqPolicy’s performance in a multitask setting, we
selected RoboCasa [27] as the benchmark platform. RoboCasa comprises a suite of tasks defined
within a simulated kitchen environment, representing complex interaction scenarios that robots might
encounter in the real world. In this exploratory experiment, we focused on 24 "atomic" tasks, which
cover fundamental sensorimotor skills such as pick-and-place, opening and closing doors, pressing
buttons, and turning faucets. Placing our method in such a simulated environment, which possesses a
certain level of difficulty and a rich variety of tasks, helps us to preliminarily understand its potential
and areas for exploration in multitask learning.

Baseline. For effective comparison, we first selected the Diffusion Policy and the autoregressive
method BC-Transformer [25] implemented in RoboCasa as direct baselines for our FreqPolicy.
Considering the characteristics of VLA models, we further introduced GR00T-N1 [5] as a reference.
GR00T-N1 is a VLA model with a tightly coupled dual-system, where its vision-language module
is responsible for understanding the environment and instructions, and the subsequent Diffusion
Transformer module employs Flow Matching technology to generate smooth action sequences in
real-time. Selecting these baselines helps us to more clearly position the relative performance of
FreqPolicy within existing VLA frameworks.

Implementation Details. In this initial exploration, our FreqPolicy model is directly integrated on
top of the Diffusion Policy framework within RoboCasa. To ensure a fair comparison, the main
parameters and observation inputs used by FreqPolicy are kept consistent with those of Diffusion
Policy. This simplified integration aims to quickly validate the basic adaptability of FreqPolicy’s core
mechanisms in a multitask scenario, rather than to perform deep customization and optimization.

Results and Discussion. The experimental results, as shown in Table 10, offer an initial insight into
FreqPolicy’s performance on the RoboCasa multitask benchmark. The data indicate that, compared
to Diffusion Policy and BC-Transformer, our method demonstrates a certain advantage in overall
multitask success rates. This preliminarily suggests that FreqPolicy’s frequency-domain processing
mechanism, and its hierarchical modeling approach to action sequences, are not only effective for
single-task learning but may also bring positive impacts to scenarios requiring the simultaneous
handling of multiple tasks. However, when compared to the GR00T-N1 model, which is specifically
designed for VLA, FreqPolicy’s current performance still shows a gap in multi-task success rates.
We attribute this primarily to the fact that FreqPolicy, in its current design and similar to Diffusion
Policy, focuses more on action generation and optimization. It has not been specifically enhanced
for deep understanding of complex language instructions and multi-modal scene perception to
the same extent as GR00T-N1. One of the core strengths of VLA models lies in their powerful
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Table 10: Multitask results on RoboCasa. Experimental results of BC-Transformer, Diffusion
Policy and GR00T-N1 are from the GR00T-N1 paper.

BC-Transformer Diffusion Policy GR00T-N1 FreqPolicy(Ours)
Success Rate 26.3% 25.6% 32.1% 27.4%

semantic understanding and scene perception capabilities, enabling them to generalize better to
unseen instruction and environment combinations.

Nevertheless, these preliminary results also provide us with important insights: could FreqPolicy’s
unique frequency-domain analysis and modeling approach serve as a beneficial supplement when
integrated into more powerful VLA frameworks? For instance, FreqPolicy’s ability to capture the
smoothness and structural information of action signals might assist VLA models in generating
more stable and physically plausible action sequences. Exploring how to effectively combine the
frequency-domain strengths of FreqPolicy with the semantic understanding capabilities of VLA
models, with the aim of further enhancing overall multi-task learning performance, will be a highly
valuable research direction for us in the future. This might involve designing new fusion mechanisms
or tailoring FreqPolicy’s frequency decomposition strategies and autoregressive processes to the
specific characteristics of VLA tasks. In summary, while FreqPolicy was not natively designed for
VLA tasks, its core ideas demonstrate a potential worthy of further investigation in the broader field
of multi-task robot learning.

F.2 Discussion on Frequency Domain

In the preceding discussions, we have preliminarily shown that the action signals in robotic manipula-
tion tasks exhibit significant compressibility in the frequency domain, with most critical information
concentrated in the lower frequency bands. This section aims to provide a more in-depth discussion
and analysis of the frequency-domain characteristics of action signals, based on a broader set of tasks
and more detailed visualizations (as shown in Figures 7 to 30). These supplementary figures provide
action visualizations (a), frequency band energy heatmaps for each action dimension (b), and success
rate curves for actions reconstructed with varying frequency ratios (c) for each task, thereby offering
more robust support for our core arguments.

High-Dimensional Tasks. In high-dimensional action spaces (22 dimensions) within Dexart tasks
(Figures 7-10, Dexart Bucket, Faucet, Laptop and Toilet), we observe consistent trends. The success
rate curves (c) for these tasks generally show that even using only 30%-70% of the low-frequency
components is often sufficient to reconstruct action sequences capable of task completion, strongly
supporting the core hypothesis that high-frequency components contribute relatively little to the
macroscopic success of these complex tasks. Concurrently, energy heatmaps (b) clearly demonstrate
that different action dimensions exhibit varying dependencies on frequency components; some
dimensions (like large-range arm movements) have energy highly concentrated in very low-frequency
bands, while others (like fine finger postures) might retain significant energy in relatively higher
bands. For instance, in Dexart Faucet (Figure 8b), energy distribution in the 10-30% or even higher
frequency bands for some dimensions might correspond to fine adjustments for turning a faucet.
Although overall trends are similar, the minimum frequency ratio for high success rates varies slightly
across Dexart tasks, with Dexart Laptop (Figure 9c), for example, reaching a success plateau around a
0.4-0.6 frequency ratio, suggesting subtle differences in action signal fidelity requirements for various
complex manipulations.

Low-Dimensional Tasks. Compared to high-dimensional Dexart tasks, low-dimensional Meta-
World tasks (Figures 11-30, typically 4-dimensional action spaces) exhibit a more pronounced
low-frequency dominance. In most Meta-World tasks, success rate curves (c) indicate that only 10%-
40% of the low-frequency ratio is sufficient for near-perfect task success, with tasks like Meta-World
Coffee-Pull (Figure 13c) and Meta-World Disassemble (Figure 15c) requiring only about 20% low-
frequency signal. This suggests higher compressibility in action signals for these simpler robotic tasks,
corroborated by their energy heatmaps (b) where most action dimensions show energy concentrated
in the lowest 0-10% band, consistent with their typically smoother, direct motion trajectories. Minor
exceptions, such as Meta-World Shelf-Place (Figure 28c) or Meta-World Push-Wall (Figure 26c),
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might need slightly more frequency components due to potentially higher precision demands at the
end-effector.

Discussion. Synthesizing these analyses, we discover the universality and variability of frequency
compression across task types: action signals are generally compressible in both high-dimensional
complex and low-dimensional structured tasks, though the required frequency bandwidth varies with
task dimensionality, complexity, and operational specifics. The heterogeneity of action dimensions
highlighted by heatmap analysis suggests that future work on dimension-adaptive frequency pro-
cessing, rather than global uniform cutoffs, could be a promising optimization, such as dynamically
allocating frequency components based on each dimension’s energy to balance performance and
efficiency. A deeper understanding of task action frequency characteristics can also guide policy
learning algorithm design, for example, by using low-frequency biases or stronger regularization for
low-frequency dominated tasks to accelerate learning and enhance generalization.

In conclusion, the additional frequency domain analysis in this section provides more comprehensive
empirical support for FreqPolicy’s core mechanisms, points to valuable directions for optimizing
frequency-based robot learning, deepens our understanding of robotic action nature, and underscores
the potential of the frequency-domain perspective in building efficient, robust robotic agents.

G Limitations

Since all of our experiments used condition inputs consistent with DP3 or DP, we have not yet explored
the potential impact of altering condition input methods on model performance. Additionally, it
should be noted that our method still has room for improvement in 2D tasks, and performance tends
to decrease when frequency domain partitioning becomes too fine-grained.
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(1) (2)

(3) (4)

Task Name: Dexart Bucket (Action Dimension: 22 )

(a) Action Visualization (b) Frequency band heat map of different action dimensions (c) Success rate of actions by different frequency ratios

Figure 7: Frequency Domain Analysis of Dexart Bucket.

(1) (2)

(3) (4)

Task Name: Dexart Faucet (Action Dimension: 22 )

(a) Action Visualization (b) Frequency band heat map of different action dimensions (c) Success rate of actions by different frequency ratios

Figure 8: Frequency Domain Analysis of Dexart Faucet.

(1) (2)

(3) (4)

Task Name: Dexart Laptop (Action Dimension: 22 )

(a) Action Visualization (b) Frequency band heat map of different action dimensions (c) Success rate of actions by different frequency ratios

Figure 9: Frequency Domain Analysis of Dexart Laptop.

(1) (2)

(3) (4)

Task Name: Dexart Toilet (Action Dimension: 22 )

(a) Action Visualization (b) Frequency band heat map of different action dimensions (c) Success rate of actions by different frequency ratios

Figure 10: Frequency Domain Analysis of Dexart Toilet.
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(1) (2)

(3) (4)

Task Name: Meta-World Bin-Picking (Action Dimension: 4 )

(a) Action Visualization (b) Frequency band heat map of different action dimensions (c) Success rate of actions by different frequency ratios

Figure 11: Frequency Domain Analysis of Meta-World Bin-Picking.

(1) (2)

(3) (4)

Task Name: Meta-World Box-Close (Action Dimension: 4 )

(a) Action Visualization (b) Frequency band heat map of different action dimensions (c) Success rate of actions by different frequency ratios

Figure 12: Frequency Domain Analysis of Meta-World Box-Close.

(1) (2)

(3) (4)

Task Name: Meta-World Coffee-Pull (Action Dimension: 4 )

(a) Action Visualization (b) Frequency band heat map of different action dimensions (c) Success rate of actions by different frequency ratios

Figure 13: Frequency Domain Analysis of Meta-World Coffee-Pull.

(1) (2)

(3) (4)

Task Name: Meta-World Coffee-Push (Action Dimension: 4 )

(a) Action Visualization (b) Frequency band heat map of different action dimensions (c) Success rate of actions by different frequency ratios

Figure 14: Frequency Domain Analysis of Meta-World Coffee-Push.
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(1) (2)

(3) (4)

Task Name: Meta-World Disassemble (Action Dimension: 4 )

(a) Action Visualization (b) Frequency band heat map of different action dimensions (c) Success rate of actions by different frequency ratios

Figure 15: Frequency Domain Analysis of Meta-World Disassemble.

(1) (2)

(3) (4)

Task Name: Meta-World Drawer-Open (Action Dimension: 4 )

(a) Action Visualization (b) Frequency band heat map of different action dimensions (c) Success rate of actions by different frequency ratios

Figure 16: Frequency Domain Analysis of Meta-World Drawer-Open.

(1) (2)

(3) (4)

Task Name: Meta-World Hammer (Action Dimension: 4 )

(a) Action Visualization (b) Frequency band heat map of different action dimensions (c) Success rate of actions by different frequency ratios

Figure 17: Frequency Domain Analysis of Meta-World Hammer.

(1) (2)

(3) (4)

Task Name: Meta-World Hand-Insert (Action Dimension: 4 )

(a) Action Visualization (b) Frequency band heat map of different action dimensions (c) Success rate of actions by different frequency ratios

Figure 18: Frequency Domain Analysis of Meta-World Hand-Insert.
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(1) (2)

(3) (4)

Task Name: Meta-World Handle-Press (Action Dimension: 4 )

(a) Action Visualization (b) Frequency band heat map of different action dimensions (c) Success rate of actions by different frequency ratios

Figure 19: Frequency Domain Analysis of Meta-World Handle-Press.

(1) (2)

(3) (4)

Task Name: Meta-World Lever-Pull (Action Dimension: 4 )

(a) Action Visualization (b) Frequency band heat map of different action dimensions (c) Success rate of actions by different frequency ratios

Figure 20: Frequency Domain Analysis of Meta-World Lever-Pull.

(1) (2)

(3) (4)

Task Name: Meta-World Peg-Insert-Side (Action Dimension: 4 )

(a) Action Visualization (b) Frequency band heat map of different action dimensions (c) Success rate of actions by different frequency ratios

Figure 21: Frequency Domain Analysis of Meta-World Peg-Insert-Side.

(1) (2)

(3) (4)

Task Name: Meta-World Peg-Unplug-Side (Action Dimension: 4 )

(a) Action Visualization (b) Frequency band heat map of different action dimensions (c) Success rate of actions by different frequency ratios

Figure 22: Frequency Domain Analysis of Meta-World Peg-Unplug-Side.
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(1) (2)

(3) (4)

Task Name: Meta-World Pick-Out-Of-Hole (Action Dimension: 4 )

(a) Action Visualization (b) Frequency band heat map of different action dimensions (c) Success rate of actions by different frequency ratios

Figure 23: Frequency Domain Analysis of Meta-World Pick-Out-Of-Hole.

(1) (2)

(3) (4)

Task Name: Meta-World Pick-Place-Wall (Action Dimension: 4 )

(a) Action Visualization (b) Frequency band heat map of different action dimensions (c) Success rate of actions by different frequency ratios

Figure 24: Frequency Domain Analysis of Meta-World Pick-Place-Wall.

(1) (2)

(3) (4)

Task Name: Meta-World Pick-Place (Action Dimension: 4 )

(a) Action Visualization (b) Frequency band heat map of different action dimensions (c) Success rate of actions by different frequency ratios

Figure 25: Frequency Domain Analysis of Meta-World Pick-Place.

(1) (2)

(3) (4)

Task Name: Meta-World Push-Wall (Action Dimension: 4 )

(a) Action Visualization (b) Frequency band heat map of different action dimensions (c) Success rate of actions by different frequency ratios

Figure 26: Frequency Domain Analysis of Meta-World Push-Wall.
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(1) (2)

(3) (4)

Task Name: Meta-World Push (Action Dimension: 4 )

(a) Action Visualization (b) Frequency band heat map of different action dimensions (c) Success rate of actions by different frequency ratios

Figure 27: Frequency Domain Analysis of Meta-World Push.

(1) (2)

(3) (4)

Task Name: Meta-World Shelf-Place (Action Dimension: 4 )

(a) Action Visualization (b) Frequency band heat map of different action dimensions (c) Success rate of actions by different frequency ratios

Figure 28: Frequency Domain Analysis of Meta-World Shelf-Place.

(1) (2)

(3) (4)

Task Name: Meta-World Stick-Pull (Action Dimension: 4 )

(a) Action Visualization (b) Frequency band heat map of different action dimensions (c) Success rate of actions by different frequency ratios

Figure 29: Frequency Domain Analysis of Meta-World Stick-Pull.

(1) (2)

(3) (4)

Task Name: Meta-World Sweep (Action Dimension: 4 )

(a) Action Visualization (b) Frequency band heat map of different action dimensions (c) Success rate of actions by different frequency ratios

Figure 30: Frequency Domain Analysis of Meta-World Sweep.
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