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Figure 1. The left part illustrates EvolvingGrasp, an approach akin to evolution, where it enables the model to learn from
experience and iteratively refine its grasping strategy. The right part demonstrates its efficiency and effectiveness

Abstract

Dexterous robotic hands often struggle to generalize ef-
fectively in complex environments due to the limitations of
models trained on low-diversity data. However, the real
world presents an inherently unbounded range of scenar-
ios, making it impractical to account for every possible
variation. A natural solution is to enable robots learn-
ing from experience in complex environments—an approach
akin to evolution, where systems improve through contin-
uous feedback, learning from both failures and successes,
and iterating toward optimal performance. Motivated by
this, we propose EvolvingGrasp, an evolutionary grasp gen-
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eration method that continuously enhances grasping per-
formance through efficient preference alignment. Specif-
ically, we introduce Handpose-wise Preference Optimiza-
tion (HPO), which allows the model to continuously align
with preferences from both positive and negative feedback
while progressively refining its grasping strategies. To fur-
ther enhance efficiency and reliability during online adjust-
ments, we incorporate a Physics-aware Consistency Model
within HPO, which accelerates inference, reduces the num-
ber of timesteps needed for preference fine-tuning, and en-
sures physical plausibility throughout the process. Exten-
sive experiments across four benchmark datasets demon-
strate state-of-the-art performance of our method in grasp
success rate and sampling efficiency. Our results validate
that EvolvingGrasp enables evolutionary grasp generation,
ensuring robust, physically feasible, and preference-aligned
grasping in both simulation and real scenarios.

ar
X

iv
:2

50
3.

14
32

9v
2 

 [
cs

.C
V

] 
 1

9 
M

ar
 2

02
5

https://evolvinggrasp.github.io/


1. Introduction
Dexterous robotic grasping has made significant strides in
embodied manipulation, enabling more adaptive and pre-
cise interactions compared to traditional grippers. Ex-
isting grasping methods [5, 9, 12, 16, 18–20, 30, 32–
34, 43, 48, 49, 51] generally fall into two categories:
optimization-based approaches [5, 9, 30, 33], which refine
hand poses to achieve force-closure states, learning-based
approaches [27, 41, 42, 44], which directly map object fea-
tures to grasp poses through regression, probabilistic mod-
eling, and generative-based methods [13, 14, 25, 26, 43],
which utilize diffusion model to estimate the distribu-
tion of hand poses. Recent advances, such as DexGrasp
Anything [52], have further introduced physics-based con-
straints to improve grasp feasibility. However, a fundamen-
tal limitation persists—limited generalization. These meth-
ods, trained on limited datasets, struggle to adapt to com-
plex environments. This challenge is exacerbated by an in-
herent property of the real world: its unbounded diversity.
The vast range of object shapes, materials, and environmen-
tal conditions makes it impractical to predefine an exhaus-
tive set of grasping strategies. Without the ability to adapt
in deployment, grasping models remain constrained, failing
to handle variations beyond their training distribution. To
overcome this, a natural approach is to enable evolution-
ary grasp generation, where the system learns from expe-
rience (i.e., both failures and successes), refining its grasp-
ing strategy through iterative improvements based on real-
world interactions. This process not only enhances gener-
alization but also allows for preference alignment, ensur-
ing that grasping behaviors adapt to task-specific require-
ments and user-defined preferences. However, achieving
efficient evolutionary refinement is non-trivial, as many ex-
isting learning-based approaches rely on slow, compute-
intensive updates, particularly in diffusion-based models
that require numerous iterative steps and physics simula-
tions.

To address these challenges, we propose EvolvingGrasp,
an evolutionary grasp generation framework that efficiently
refines grasp strategies through preference alignment while
maintaining physical plausibility. At its core, we introduce
Handpose-wise Preference Optimization (HPO), a novel
method that reformulates preference alignment [2, 38, 39,
50, 53] as a posterior probability optimization problem, en-
couraging generated grasps to converge toward preferred
distributions while diverging from non-preferred ones. No-
tably, the proposed HPO is an extension of Direct Prefer-
ence Optimization (DPO) [31], where it is also, to the best
of our knowledge, the first to incorporate the DPO into the
dexterous grasp. To further improve efficiency, we integrate
HPO into a Physics-Aware Consistency Model (including
two parts, i.e., Physics-Aware Distillation for training and
Physics-Aware Sampling for inference), which pretrains a

diffusion model and distills it into a lightweight, few-step
sampling model. This enables both rapid inference and
efficient preference fine-tuning, significantly reducing the
number of required sampling steps and optimization itera-
tions. Additionally, we introduce three physics-aware con-
straints to ensure the stability, realism, and feasibility of
generated grasp poses—surface pulling force to maintain
stable contact, external penetration repulsion force to pre-
vent object penetration, and self-penetration repulsion force
to avoid inter-finger collisions.

Extensive experiments across four benchmark datasets
demonstrate that EvolvingGrasp achieves state-of-the-art
results, significantly improving grasp success rate, sampling
efficiency, and physical plausibility, with 30x speedup
over existing methods, demonstrating robust generalization
across simulated and real-world benchmarks. Our contribu-
tions can be summarized as follows:
• We introduce EvolvingGrasp, an efficient evolutionary

grasp generation framework that enables iterative refine-
ment, addressing the challenge of generalizing to diverse
and unstructured real-world environments.

• Efficient preference alignment is achieved through
Handpose-wise Preference Optimization (HPO), which
formulates grasp adaptation as a posterior probability op-
timization problem, enabling the model to iteratively con-
verge toward preferred grasp distributions.

• We propose a Physics-Aware Consistency Model (PCM)
that accelerates preference alignment by reducing sam-
pling steps while enforcing geometric consistency and
physical feasibility through structured constraints.

• Extensive experiments across four benchmark datasets
demonstrate that our method achieves state-of-the-art
grasp success rates, physical plausibility, and sampling
efficiency. Furthermore, it enables real-time grasp gen-
eration with minimal computational overhead, achieving
comparable performance to gradient-based methods.

2. Related Work
2.1. Dexterous Grasping
Dexterous grasp generation aims to produce diverse and
high-quality grasping poses for robotic hands to interact
with objects effectively. Recent works can be categorized
into regression-based [18, 19, 32] and generation-based
methods [13, 14, 25–27, 41, 42]. Regression-based meth-
ods directly predict grasping parameters from the input ob-
ject, but they often suffer from mode collapse issues that
limits output diversity. Generation-based methods, though
capable of producing varied solutions, face efficiency chal-
lenges. SceneDiffuser [13], UGG [25], and DexGrasp Any-
thing [52] require multiple sampling steps to generate di-
verse grasping poses, and DexGrasp Anything [52] addi-
tionally incurs computational overhead by calculating phys-
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Figure 2. Overview of EvolvingGrasp. The evolutionary process begins with the human preference guidance, where Handpose-wise
Preference Optimization (HPO, highlighted in the green rectangle) is employed to facilitate preference alignment. These grasp poses are
generated by the Physics-Aware Consistency Model (shown in blue rectangles), including Sampling and Distillation mechanism, to ensure
the sampling efficiency and the physical plausibility. In this way, EvolvingGrasp, an efficient evolutionary grasp generation framework is
proposed to enable the grasp model iteratively converge toward preferred distributions.

ical constraint losses and performing gradient updates at
each sampling iteration. However, existing methods cannot
generate grasping poses aligned with human habits due to
their lack of evolutionary adaptation and preference align-
ment. They also struggle to balance physical plausibility
with computational efficiency.

2.2. Accelerating Diffusion Models

Accelerating dexterous grasping is vital for enhancing real-
time adaptability. A series of diffusion-based acceleration
methods have emerged, making real-time and efficient gen-
eration possible. DDIM [35] accelerates inference by refor-
mulating the stochastic denoising process into a determin-
istic ODE solver. The DPM-Solver [23, 24] series further
designs efficient high-order ODE solvers, achieving compa-
rable quality with only 10 ∼ 20 steps. However, their per-
formance degrades significantly when sampling steps are
reduced to 2 ∼ 4. Consistency works [15, 22] support
few-step sampling while preserving quality. CTM [15] ex-
tends CM to reduce cumulative errors and discretization in-
accuracies. sCMs [22] unifies flow matching and diffusion
frameworks to avoid discretization errors and hyperparam-
eter tuning. Therefore, we employ the consistency model to
enable efficient evolutionary refinement, reducing inference
timesteps while maintaining result quality.

2.3. Preference Finetuning for Diffusion Models

Preference alignment play a crucial role inenabling gener-
ative models to learn from user feedback, optimize gen-
eration strategies, and progressively improve output qual-
ity. Some researchers utilize it into diffusion models to
better align with human preferences in image generation
area. These methods can be categorized into two types,
finetuning with reward model [1, 4, 6, 8] and reward-free
finetuning [10, 39, 46]. The former includes DDPO [1]
and DPOK [8] which treat the denoising process of dif-
fusion models as an MDP and finetune using multiple re-
ward models. Finetuning without reward model includes
D3PO [46] and Diffusion-DPO [39], which extend the the-
oretical framework of DPO [31] to multi-step MDPs. These
approaches learn an optimal reward model and then use it to
refine the sampling strategy, making them a relatively more
cost-effective alternative. However, RL-based fine-tuning
for diffusion models still requires backpropagation at ev-
ery sampled timestep, making it highly time-consuming.
Applying this approach directly to grasping tasks is im-
practical for real-world applications, where efficient refine-
ment is crucial. Therefore, we propose a faster preference
alignment fine-tuning approach that reduces backpropaga-
tion steps, improving grasping performance while aligning
it with human preferences.



3. Methodology
3.1. Overview
To achieve efficient evolutionary grasp generation that
aligns with human preferences while maintaining both ef-
ficiency and physical plausibility, we propose Evolving-
Grasp, as illustrated in Fig. 2. The evolutionary pro-
cess begins with preference alignment, where we introduce
Handpose-Wise Preference Optimization (HPO) (Section
3.3). HPO formulates grasp adaptation as a posterior prob-
ability optimization problem, allowing the model to itera-
tively converge toward preferred grasp distributions. How-
ever, directly applying HPO suffers from slow sampling and
inefficiencies in preference alignment, limiting its practi-
cality for real-time grasp refinement. To address these chal-
lenges, we incorporate a Physics-Aware Consistency Model
(PCM) (Section 3.4), which leverages a consistency model
framework to enhance efficiency by reducing the number
of required sampling steps. While this improves inference
speed, naive consistency-based sampling may still gener-
ate physically implausible grasp poses. To ensure geomet-
ric consistency and physical feasibility, PCM integrates a
physics-aware distillation and sampling mechanism, which
enforces structured physical constraints on the generated
poses.

3.2. Problem Formulation
Given the object point cloud representation O ∈ RN×3,
our goal is to generate dexterous grasp poses with high
success rate and low penetration from the posterior distri-
bution P (x | O), where x = {xi}ni=1. Specifically, the
pose parameters contain three parts, joint angles of the hand
θh ∈ R24, global translation Tglobal ∈ R3, and global rota-
tion Rglobal ∈ SO(3).

Given ground truth samples from the data distribution
π(x0), the noise schedule weight α, the goal of diffusion
models is to fit the GT data distribution. The objective of
training diffusion model is as follows:

Et∼[0,T ],x0,ϵ∼N(0,I)

[
∥ϵ− ϵθ (xt, t, O)∥2

]
(1)

where xt =
√
ᾱtx0 +

√
1− ᾱtϵ. Given the noise related

parameter σt and the mean from xt to xt−1, the reverse pro-
cess of diffusion model is as follows:

pθ (xt−1 | xt) = N
(
xt−1;µθ (xt, t) , σ

2
t I
)

(2)

3.3. Handpose-wise Preference Optimization
To achieve preference alignment in the evolutionary adapta-
tion process, we introduce the HPO, an extension of direct
preference optimization (DPO). In DPO, the fundamental
assumption is that we have access to data generated by the
model, with human annotators providing the corresponding

preferences. Specifically, for a given object O, we observe
pairs of grasp poses xw

0 and xl
0, where the set xw

0 is pre-
ferred over xl

0. These preferences can be modeled using
the Bradley-Terry model, which expresses the probability
of one sample being preferred over another as:

pBT

(
xw
0 ≻ xl

0

)
= σ

(
r (c, xw

0 )− r
(
c, xl

0

))
(3)

The training objective of DPO is to maximize the likeli-
hood of the observed preferences, which can be formulated
as a binary classification problem. Specifically, the whole
model is finetuned to minimize the following loss function:

LBT(θ) = −E(xw
0 ,xl

0)∼D log σ

(
βE

xw
1:T∼πθ(x

w
1:T |xw

0 )

xl
1:T∼πθ(x

l
1:T |xl

0)[
log

πθ(x
w
0:T )

πref(xw
0:T )
− log

πθ(x
l
0:T )

πref(xl
0:T )

]) (4)

where D is the paired-wise grasp pose dataset. Following
[39], we can get the upper bound of Eq. (4) as:

LBT (θ) ≤ − βE
(xw

0 ,xl
0)∼D,n∼U(1,N),xw

n−1,n∼πθ(xw
n−1,n|xw

0 )

log σ

(
log

πθ

(
xw
n−1 | xw

n

)
πref

(
xw
n−1 | xw

n

) − log
πθ

(
xl
n−1 | xl

n

)
πref

(
xl
n−1 | xl

n

))
(5)

where πθ (xn−1 | xn) is the probability of sampling xn−1

from xn, which can be computed by:

πθ (xn−1 | xn) =
1√
2πσn

exp(− (xn − µθ(xn, n))
2

2σ2
n

) (6)

As far as we know, HPO is the first to integrate DPO
into grasp pose generation, from which we extend DPO to
a more flexible form. In HPO, there is no requirement to
maintain an equal number of preferred and non-preferred
grasp poses, which enables more adaptive preference learn-
ing. The objective of HPO is introduced as follows:

LHPO = βE
xi
0∼D,n∼U(1,N),xi

n−1,n∼πθ(xi
n−1,n|xi

0)
log σ

Nsuc∑
i=1

log
πθ

(
xi
n−1 | xi

n

)
πref

(
xi
n−1 | xi

n

) − Nfail∑
j=1

log
πθ

(
xj
n−1 | xj

n

)
πref

(
xj
n−1 | x

j
n

)


(7)
where Nsuc and Nfail represent the number of preferred
and non-preferred poses. HPO optimizes grasp pose gener-
ation by quantifying the probabilistic divergence between
successful grasps (preferred samples) and failed grasps
(non-preferred samples), thereby driving the model towards
human-preferred behaviors. This process inherently in-
volves the dynamic adjustment and maximization of re-
ward signals: preferred grasp poses are reinforced due to



their higher probability, while non-preferred poses are sup-
pressed, guiding the model to progressively discard ineffec-
tive strategies.

Preferred grasp selection can be conducted through ei-
ther simulation-based evaluation or human-in-the-loop se-
lection. In the simulation-based approach, poses that
achieve success across all six directional evaluations are
classified as preferred samples, while the remaining poses
are treated as negative samples. Alternatively, in the human
selection process, grasp poses that align with human intu-
ition and habitual preferences are designated as preferred
samples, while the others are considered non-preferred. Fi-
nally, we finetune the whole model via LoRA [11] using Eq.
(7) to align the model with preferences.

3.4. Physics-Aware Consistency Model
3.4.1. Consistency Model
Directly applying HPO faces two major efficiency chal-
lenges: generating poses requires over hundreds of
timesteps per inference, and preference fine-tuning de-
mands a large number of backpropagation steps. To ad-
dress these inefficiencies, we adopt the consistency model
framework to accelerate both sampling process and prefer-
ence alignment. The core idea of the consistency model is
to learn a mapping from any point along the ODE trajec-
tory back to its starting point, which corresponds to the data
distribution. Given a Probability Flow ODE trajectory [36]
{xτn}τn∈[0,T ], a consistency model fθ is defined as:

fθ : (xτn , τn, O) 7→ x0 (8)

where x0 is the initial point of the trajectory, O is the obser-
vation as condition. Due to space limitations, we omitted
condition O in other parts of the paper, except for the ap-
pendix. The self-consistency property ensures that:

fθ (xτn , τn) = fθ′
(
xτ ′

n
, τ ′n
)
∀τn, τ ′n ∈ [0, T ] (9)

The consistency model needs to meet a key boundary con-
dition: when t = 0, the model output should be the input
itself, that is, fθ(x0, 0, O) = x0. This can be achieved as
the following way:

fθ(xτn , τn) = cskip (τn)xτn + cout (τn)Fθ(xτn , τn) (10)

where cskip(t) and cout(t) are differentiable functions that
satisfy cskip(ϵ) = 1 and cout(ϵ) = 0. Fθ(x, t) denotes a
deep neural network that predicts x̂0.

Fθ(xτn , τn) =
1
√
ᾱτn

(
xτn −

√
1− ᾱτnϵθ (xτn , τn)

)
(11)

Consistency distillation leverages pre-trained diffusion
model to condense multi-step sampling into a more efficient

few-step inference process. The process involves generat-
ing pairs of adjacent points on the PFODE trajectory using
numerical ODE solvers and minimizing the difference be-
tween the model’s outputs for these pairs. The loss function
for consistency distillation is defined as:

LCD = E
[
d
(
fθ (xτn , τn) , fθ′

(
x̂∗
τn−1

, τn−1

))]
(12)

where O is omitted for simplicity, x̂∗
τn−1

is computed using
a numerical ODE solver, d(·, ·) is a L2 distance metric, θ
and θ′ represent the online network and target network pa-
rameters. In addition, the parameters of θ′ are updated by
the exponential moving average (EMA) of the parameters
of θ. x̂∗

τn−1
can be computed as:

x̂∗
τn−1

←−
√
ᾱτn−1

Fθ(xτn , τn) +
√
1− ᾱτn−1

ϵ (13)

During sampling, we utilize the consistency function
to directly generate the final sample and the qual-
ity of the generated sample can be enhanced through
an iterative process that alternates between denoising
and injecting noise. Given the sequence of timesteps S ∈
{τi | τ0 = 0, τN−1 = T, τi < τi+1 for i = 0, 1, . . . , N − 1},
the adding-noise process can be formulated as:

x̂τn−1 = µθ(xτn , τn) + στnϵ (14)

where µθ =
√
ᾱτn−1

fθ(xτn , τn), στn =
√

1− ᾱτn−1
.

Subsequently, we conduct the prediction of the final sam-
ple utilizing the trained consistency function once more.

3.4.2. Physics-Aware Distillation and Sampling
Although adopting the consistency model improves sam-
pling and preference fine-tuning efficiency, it still generates
physically implausible poses. To address this, we introduce
a Physics-Aware Distillation and Sampling paradigm that
enforces physical constraints during the distillation process
of predicting x̂0 while ensuring that the sampling trajecto-
ries adhere to specific constraints. Following [52], we incor-
porate three physics-aware objectives, with the distillation
objective of the consistency model formulated as follows:

LPAD = LCD +

m∑
i=1

αiLPAi (Fθ(xτn , τn), ϵθ) (15)

where LPAi
(Fθ(xt, t), ϵθ) is the ith physical constraint

loss and m = 3 denotes three constraints, i.e., Surface
Pulling Force, External-penetration Repulsion Force, Self-
Penetration Repulsion Force respectively [52]. These con-
straints guarantee grasping feasibility and maintain geomet-
ric accuracy in finger-to-object and inter-finger interactions.
αi is the corresponding weight parameter. We first train
a diffusion model for grasp pose generation as a teacher
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Figure 3. Mean grasping performance in terms of success rate and penetration of randomly selected 6 objects with the finetuning epoch
increasing during inference optimization.

model. Then, we utilize LPAD to distill the teacher model
into a student model.

During sampling, the consistency model estimates a
clearer hand pose x0 based on the current noisy hand
pose xτn and object information O by consistency function
fθ(xτn , τn, O). Subsequently, physical constraints are ap-
plied to steer the sampling process, making it closer to a
physically feasible grasping pose. Following [3, 7, 47], the
gradient of the constraint loss is used to modify the mean
from xt to xt−1:

µ̂θ(xτn , τn) = µθ(xτn , τn)

+

m∑
i=1

γi∇xτn
LPAi (Fθ(xτn , τn), ϵθ)

(16)

where γi is the weight parameter corresponding to each
physical constraint. Moreover, we can derive a new map-
ping from noise to data as follows:

f̂θ(xτn , τn) = fθ(xτn , τn) +
1

√
ᾱτn−1

m∑
i=1

γi∇xτn
LPAi

(17)
By employing the physics-aware consistency model, we de-
rive a novel preference alignment objective based on the
new sampling path. The detailed derivation is provided in
Appendix B. As a result, our method can efficiently gener-
ate higher-quality poses during the evolutionary process.

4. Experiments

We first simply present experimental setup which includes
datasets, evaluation metrics and baselines in Sec. 4.3.1.
More details of setup including datasets and implementa-
tion details are in Appendix C. Then we provide the quan-
titative and qualitive results of EvolvingGrasp in Sec. 4.2,
followed by ablation study about different modules and hy-
perparameter analyses in Sec. 4.3.2. Next, we demonstrate
the evolutionary improvement of EvolvingGrasp through an
experiment starting from a suboptimal model trained on a
degraded dataset in Sec. 4.4. Finally, We will demonstrate
EvolvingGrasp in the real-world deployment in Sec. 4.5.

4.1. Experimental Setup
Datasets. We conduct experiment on four datasets, includ-
ing DexGraspNet [40], Multidex [17], Realdex [21], Dex-
GRAB [37] respectively.
Evaluation Metrics. We use four metrics to evaluate the
grasping performance. Success rate Suc.6 measures the
proportion of grasping poses where the object’s displace-
ment does not exceed 2 cm in all six axial directions (±X ,
±Y , ±Z), evaluating multi-directional stability. Suc.1
measures the proportion where displacement does not ex-
ceed 2cm in at least one direction, assessing single-direction
stability. Pen. indicates the maximum penetration depth
(mm) between the hand and the object, with lower values
suggesting more physically plausible grasps. Above metrics
are calculated in the IssacGym simulator [28] with settings
consistent with SceneDiffuser [13]. For efficiency, Time
refers to the computational time required to generate grasp-
ing poses for a batch of objects.
Baselines. Some generative-based methods such as
UniDexGrasp [45], GraspTTA [14], SceneDiffuser [13],
UGG [25], and DexGrasp Anything [52] are compared on
four benchmark datasets.

4.2. Main Results
To validate the effectiveness of our method in continuously
enhancing grasping performance, we conduct quantitative
evaluations on six randomly selected objects from each
dataset, measuring both the Suc.6 metric and the degree of
penetration. The results are illustrated in Fig. 3, indicating
that as the number of inferences increases, the Suc.6 metric
steadily improves. Although penetration exhibits some fluc-
tuations due to increased contact area between the hand and
the object, it still follows a downward trend. Additionally,
we present qualitative results in Fig. 4, demonstrating how
our method integrates human preferences during inference.
This enables the selection of more favorable poses and pro-
gressively refines grasping poses to better align with human
preferences through iteration. For instance, early generated
poses may obstruct the camera lens, but after several rounds
of preference-based finetuning, the model learns to produce
poses that avoid blocking the lens.
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Figure 4. Evolution of robotic grasp preferences during efficient feedback-driven finetuning across 10 epochs. Top row illustrates the
adjustment from hand occlusion to clear nozzle visibility. Middle row demonstrates the transition from lens obstruction to an unobstructed
camera view. The bottom row shows the evolution from a top-down grasping approach to a bottom-up one, while simultaneously mitigating
physical impacts.

We conduct the experiment with comparing with other
dexterous grasp generation methods in Tab. 1. Compared
to other generative-based approaches, our method excels
in generating high-quality, physically plausible grasping
poses while significantly reducing computational time. It is
worth highlighting that the proposed method achieves 30x
speedup (32s∼38s v.s. 0.73s∼2.7s) compared to these SO-
TAs. After fine-tuning, our approach achieves superior per-
formance by leveraging its evolutionary capability through
iterative refinement. Notably, our preference fine-tuning
guides the model to generate poses that better align with hu-
man preferences, which may, to some extent, reduce the di-
versity of the generated results. We also evaluate the trade-
off between efficiency and grasp quality during preference
alignment with different numbers of inference steps. While
increasing the steps improves performance, it inevitably in-
curs additional computational costs. Moreover, even with-
out guidance during sampling, we can achieve comparable
results in real time.

4.3. Ablation Study
4.3.1. Ablation on Different Modules
We investigate the impact of different modules in the
physics-aware consistency model, Physical constraints
Guidance in Distillation and Sampling from which we
dubbed as PGD and PGS. We also consider the perfor-
mance of HPO with and without physical guidance during
sampling on test split of the multidex dataset. The results
presented in Tab. 2 demonstrate the key role of physical
constraints and preference finetuning to successful grasping

pose generation during preference alignment.

Generated Samples
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Figure 5. The relationship between the success rate of Evolving-
Grasp and the number of generated samples.

4.3.2. Ablation on Evolutionary Finetuning
HPO not only effectively aligns grasping poses with hu-
man preferences at the individual object level but also en-
hances performance across the entire dataset. During in-
ference across the entire dataset, we collect both successful
and failed grasping samples for each object, utilizing Eq.
(5) to perform lightweight finetuning of the entire model.
Fig. 5 illustrates the relationship between EvolvingGrasp’s
Suc.6 metric and the number of generated samples, show-
ing that our method continuously enhances grasping per-
formance as more samples are generated. Further ablation
studies on the impact of different hyperparameters are pro-
vided in Appendix D.2.



Table 1. Grasping performance in terms of Suc.6, Suc.1, and Pen. comparison across different methods and datasets. “Step” refers to
inference timestep. Bold values highlight the best results and underlined values indicate the runner-up.

Method
Dataset DexGraspNet MultiDex RealDex DexGRAB

Time ↓
Suc.6 ↑ Suc.1 ↑ Pen. ↓ Suc.6 ↑ Suc.1 ↑ Pen. ↓ Suc.6 ↑ Suc.1 ↑ Pen. ↓ Suc.6 ↑ Suc.1 ↑ Pen. ↓

UniDexGrasp [45] 33.9 70.1 31.9 21.6 47.5 13.5 27.1 59.4 39.0 20.8 55.8 37.4 0.46±0.11

GraspTTA [14] 18.6 67.8 24.5 30.3 62.8 19.0 13.3 46.4 40.1 14.4 51.0 51.4 10.41±0.32

SceneDiffuser [13] 26.6 66.9 31.0 69.8 85.6 14.6 21.7 56.1 42.0 39.1 85.0 41.1 3.41±0.13

UGG [25] 46.9 79.0 25.2 55.3 93.4 10.3 32.7 63.4 34.4 42.7 90.6 33.2 38.34±2.31

DexGrasp Any. [52] 53.6 90.4 21.5 72.2 96.3 9.6 34.6 71.2 23.1 56.5 91.8 28.6 32.91±1.34

Ours w/o HPO (2-step) 60.8 91.0 19.2 65.6 97.5 15.2 41.9 75.4 19.5 52.2 93.9 25.1 0.73±0.03

Ours (2-step) 62.4 90.5 19.3 65.9 97.2 15.3 44.0 77.8 19.7 53.3 92.5 24.3 0.73±0.03

Ours w/o HPO (4-step) 63.8 93.0 17.4 75.3 97.1 13.1 51.6 82.9 20.5 55.6 96.0 23.8 1.41±0.07

Ours (4-step) 65.2 92.7 17.2 76.8 98.4 13.0 50.6 82.5 20.3 57.7 95.2 23.7 1.41±0.07

Ours w/o HPO (8-step) 65.2 93.5 16.2 75.6 98.7 12.2 63.6 86.6 21.9 56.8 96.8 23.1 2.71±0.08

Ours (8-step) 65.4 92.3 15.9 80.3 98.7 12.3 64.4 89.1 21.8 60.8 96.4 22.3 2.71±0.08

Real-time (2-step) 55.2 90.5 20.0 63.7 95.0 13.8 46.5 78.9 21.4 48.9 93.3 24.8 0.06±0.01

Real-time (4-step) 59.9 90.6 19.8 64.3 96.5 11.6 58.2 87.0 21.1 55.4 95.4 24.1 0.10±0.02

Table 2. Ablation study on incorporating physical constraints dur-
ing both training and sampling stages and the LLM module. The
evaluation is conducted on Multidex when timestep is 4.

CM PGD PGS HPO Suc.6 ↑ Suc.1 ↑ Pen. ↓ Time ↓
a ✓ 60.0 94.6 14.0 0.10±0.02

b ✓ ✓ 64.3 96.5 12.5 0.10±0.02

c ✓ ✓ 66.2 95.6 14.9 1.41±0.07

d ✓ ✓ ✓ 67.5 96.5 11.9 0.10±0.02

e ✓ ✓ ✓ 75.3 97.1 13.1 1.41±0.07

f ✓ ✓ ✓ ✓ 76.8 98.4 13.0 1.41±0.07
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Figure 6. The variation of the mean grasping success rate of
the evolving model for randomly selected objects in the multidex
dataset with increasing finetuning epochs. The blue dashed line
represents the grasping success rate under the original model.

4.4. Training from a Degraded Dataset

In this subsection, we explore the feasibility of enhancing
model performance through feedback-driven finetuning for
single-object grasping tasks, particularly when trained on
suboptimal data. To begin with, we randomly add the noise
on the hand pose parameter of the original multidex dataset.
This perturbation creates a degraded dataset, which we then

Figure 7. Real-world deployment on Shadow Hand.

use to train and distill a suboptimal model. During the
inference phase of this suboptimal model, we collect suc-
cessfully grasping poses as positive samples and all other
poses as negative samples. We then employ Eq. 5 to fine-
tune the whole model with LoRA [11]. Fig. 6 illustrates the
change in the average grasping success rate of the subop-
timal model on randomly sampled objects from the multi-
dex dataset as the number of fine-tuning epochs increases.
The results indicate that we continuously improve the suc-
cess rate during the evolutionary adaptation process and ul-
timately outperform the accuracy of the original model.

4.5. Real World Deployment
To verify that EvolvingGrasp can continuously enhance
grasping performance and align with human preferences in
real world, we deploy our model on a real ShadowHand
robot, as shown in Fig. 7. The pre-grasping motion trajec-
tory is generated based on RealDex [21]. Real-world ex-
periments demonstrate that our method achieves success-
ful grasping through several efficient preference finetun-
ing when the initial grasp attempt fails. Additional video
demonstrations can be found in supplementary materials.

5. Conclusion
We propose EvolvingGrasp, an evolutionary grasp genera-
tion method through efficient preference alignment. HPO is



introduced to allow the model to continuously align the per-
formance with preference signals. We design the Physics-
Aware Consistency Model to achieve both rapid inference
and efficient preference finetuning while maintaining phys-
ical plausibility. Extensive experiments across four bench-
marks demonstrate that our method achieves state-of-the-art
results. Furthermore, we deploy our model on a real Shad-
owHand robot to validate its evolutionary capability in real-
world scenarios.
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Appendix
A. Pseudo Code of EvolvingGrasp
Pseudo Code of EvolvingGrasp is shown in Algorithm 1 and 2.

Algorithm 1 Physics-Aware Sampling and Handpose-Wise Preference Optimization

Require: Number of inference timesteps T , number of finetuning epochs Eft, number of objects K, physical-aware consis-
tency model ϵθ, test batchsize B, test time sequences S ∈ {τi | τ0 = 0, τN−1 = T, τi < τi+1 for i = 0, 1, . . . , N − 1},
differentiable functions cskip and cout, gradient guidance weight {γi}mi=1.

1: Copy the parameters of consistency model ϵref = ϵθ and set ϵref to have requires grad = False.
2: for e = 1 : Eft do
3: # Sample grasping poses
4: for k = 1 : K do
5: Choose an object Ok and sample xT ∼ N (0, I)
6: for i = 1 : B do
7: for n = N − 1 : 0 do
8: Fθ(x

i
k,τn

, τn, Ok) =
1√
ᾱτn

(
xi
k,τn
−
√
1− ᾱτnϵθ

(
xi
k,τn,

, τn, Ok

))
9: fθ(x

i
k,τn

, τn, Ok) = cskip (τn)x
i
k,τn

+ cout (τn)Fθ(x
i
k,τn

, τn, Ok)
10: # Sampling with Gradient Guidance:
11: µ̂θ(x

i
k,τn

, τn, Ok) =
√
ᾱτn−1fθ(x

i
k,τn

, τn, Ok) +
∑m

i=1 γi∇xτn
LPAi

(
Fθ(x

i
k,τn

, τn), ϵθ

)
12: στn =

√
1− ᾱτn−1

13: xi
k,τn−1

= µ̂θ(x
i
k,τn

, τn, Ok) + στnϵ, ϵ ∼ N (0, I)
14: end for
15: end for
16: # Select the Preferred Grasp Poses
17: for i = 0 : B do
18: if xi

0 grasp object Ok matches human preference then
19: hi = 1
20: else
21: hi = −1
22: end if
23: end for
24: # Efficiently Feedback-driven Finetuning
25: for n = N − 1 : 0 do
26: # Utilizing Fewer Timesteps for Preference Alignment.
27: for i = 1 : B do
28: with grad:
29: µθ(x

i
k,τn

, τn, Ok) =
√
ᾱτn−1fθ(x

i
k,τn

, τn, Ok), µref(x
i
k,τn

, τn, Ok) =
√
ᾱτn−1fref(x

i
k,τn

, τn, Ok)

30: πθ

(
xi
k,τn−1

| xi
k,τn

, Ok

)
= 1√

2πστn

exp(− (xi
k,τn

−µθ(x
i
k,τn

,τn,Ok))
2

2σ2
τn

)

31: πref

(
xi
k,τn−1

| xi
k,τn

, Ok

)
= 1√

2πστn

exp(− (xi
k,τn

−µref (x
i
k,τn

,τn,Ok))
2

2σ2
τn

)

32: end for
33: Update θ using gradient descent with LoRA:

∇θ log σ(

B∑
i=1

hiβ log
πθ(x

i
k,τn−1

|xi
k,τn

, τn, Ok)

πref(xk,τn−1
|xi

k,τn
, τn, Ok)

)

34: end for
35: end for
36: end for



Algorithm 2 Physical-Aware Distillation

Require: Training dataset Dt, number of training epochs Et, learning rate η, pre-trained diffusion model ϵθ, number of
timesteps Tdm, distance metric d(·, ·), EMA rate µ, noise schedule {αt}Tdm

t=1 , physics-aware constraints weights {αi}mi=1.
1: Copy the parameters of the pre-trained diffusion model as the target network ϵθ′ = ϵθ
2: for e = 1 : E do
3: for k = 1 : K do
4: Choose an object Ok and sample x0 ∼ Dt, n ∼ U [1, N ]
5: Sample xτn ∼ N (

√
ᾱτnx0, (1− ᾱτn)I)

6: Fθ(xτn , τn, Ok) =
1√
ᾱτn

(xτn −
√
1− ᾱτnϵθ (xτn , τn, Ok))

7: x̂∗
τn−1

=
√
ᾱτn−1

Fθ(xτn , τn, Ok) +
√

1− ᾱτn−1
ϵ, ϵ ∼ N (0, I)

8: LPAD = E
[
d
(
fθ (xτn , τn) , fθ′

(
x̂∗
τn−1

, τn−1

))]
+
∑m

i=1 αiLPAi (Fθ(xτn , τn), ϵθ)

9: θ ← θ − η∇θLPAD

10: θ′ ← stopgrad (µθ′ + (1− µ)θ)
11: end for
12: end for

B. Proof
Defined on the new path, the proof of the upper bound is as follows:

LBT(θ) =− Exw,l
0 ∼D log σ

(
βE

xw,l
1:T∼πθ(x

w,l
1:T |xw,l

0 )

[
log

πθ(x
w
0:T )

πref(xw
0:T )
− log

πθ(x
l
0:T )

πref(xl
0:T )

])

=− Exw,l
0 ∼D log σ

(
βE

xw,l
1:T∼πθ(x

w,l
1:T |xw,l

0 )

 N∑
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log
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xw
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| xw
τn

)
πref
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xw
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log
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)
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NEn
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where the last inequality is based on Jensen’s inequality and − log σ(·) is a strict convex function. Therefore, we use the new
objective 18 to optimize the whole model with LoRA [11].

Table 3. Cross-dataset evaluation results. The highest performances are highlighted in bold, while the second-highest performances are
indicated with underline.

Testing Dataset DexGraspNet MultiDex RealDex DexGRAB

Training Dataset Suc.6 ↑ Suc.1 ↑ Pen. ↓ Suc.6 ↑ Suc.1 ↑ Pen. ↓ Suc.6 ↑ Suc.1 ↑ Pen. ↓ Suc.6 ↑ Suc.1 ↑ Pen. ↓
DexGraspNet 65.2 92.7 17.2 73.4 97.1 9.7 54.1 90.1 19.4 58.1 94.3 20.6
MultiDex 67.6 94.0 19.5 76.8 98.4 13.0 51.9 88.6 19.4 65.6 96.8 19.5
RealDex 52.2 81.1 20.7 51.5 88.1 14.0 50.6 82.5 20.3 46.0 80.0 18.3
DexGRAB 64.9 92.6 17.1 75.3 99.3 9.9 53.1 88.5 19.7 57.7 95.2 23.7



C. Details of Experimental Setup

C.1. Dataset Setups
DexGraspNet is a large-scale dataset for dexterous grasp-
ing, comprising 1.32 million grasp samples across 5,355
objects from 133 diverse categories. While its optimization-
based generation ensures high quality and diversity, its ap-
plicability in real-world scenarios is limited.

In contrast, MultiDex focuses on a smaller set of 58 ev-
eryday objects but offers a rich variety of grasping poses for
each object. This makes it an ideal dataset for studying the
diversity of grasping configurations and developing meth-
ods that can generate a wide range of effective grasps for
common objects.

Realdex shifts the focus to real-world applications by
capturing natural human grasping behaviors. It contains
59,000 samples across 52 objects, making it highly suit-
able for training robots to learn human-like grasping poses.
Although it covers fewer object categories, its real-world
grounding allows it to effectively validate the generaliza-
tion and practicality of dexterous grasping methods in real
environments.

DexGRAB, derived from human hand interaction data,
provides over 1.64 million grasp samples across 51 distinct
objects. It offers rich grasping patterns and natural inter-
action behaviors, making it a valuable resource for under-
standing human grasping strategies. Similar to DexGrasp-
Net, DexGRAB’s data quality is high after filtering, but its
real-world applicability may also face some limitations due
to its primarily simulation-based nature.

Together, these datasets offer a range of strengths and
limitations, from the large-scale optimization-based ap-
proaches of DexGraspNet and DexGRAB to the real-world
grounding of Realdex and the diversity-focused MultiDex.
Each dataset contributes unique insights and challenges to
the field of dexterous grasping research.

C.2. Implementation Details
Our EvolvingGrasp contains distillation and sampling,
which are implemented using Pytorch [29] platform in one
NVIDIA Tesla A40 GPU. In the distillation process, we
train EvolvingGrasp for 1,000 epochs with a batch size of
1,200. During both the distillation and preference finetun-
ing processes, the initial learning rate is set to 0.00001.
For the distillation process, the learning rate remains un-
changed. During inference, the success rate of the gener-
ated grasping poses is firstly evaluated. If the success rate
improves, the learning rate is adaptively reduced, otherwise,
it is increased accordingly. Additionally, the adjustment of
the learning rate is constrained within a predefined thresh-
old range to ensure it remains within reasonable bounds.
The sampling and preference optimization processes are im-
plemented in test split of each corresponding dataset.

Table 4. Evaluating Cross-Dataset Generalization. Model perfor-
mance is compared on RealDex, with training on DexGraspNet.

Method Suc.6 ↑ Suc.1 ↑ Pen. ↓
SceneDiffuser 16.1 52.1 29.2
GraspTTA 25.5 64.8 31.6
UGG 33.6 74.5 33.0
DexGrasp Any. 38.4 77.5 19.2
Ours w/o HPO 52.6 88.8 19.5
Ours 54.1 90.1 19.4

D. Additional Experiments
D.1. Performance of Cross Dataset
We conducted cross-validation experiments on four datasets
with our method and one dataset with four methods. The re-
sults with four datasets are shown in Table 3, which demon-
strate that the Physics-Aware Consistency Model trained on
the Multidex dataset achieved the best performance when
tested on the other datasets. The model trained and tested
on the DexGRAB and DexGraspNet datasets showed mod-
erate performance. Since Realdex is a real-world dataset
with relatively lower quality, the performance of the model
trained and tested on Realdex was relatively worse. The
results with four methods are shown in Table 4, which illus-
trate that our methods can significantly improve the grasp-
ing performance on the realdex dataset compared with other
methods.

D.2. More Ablation Studies

Table 5. Ablation study on different hyperparameters (i.e., the reg-
ularization weight β, the number of iterations per finetuning epoch
Nft). We report the results under 2, 4, and 8 steps during sam-
pling.

T β Suc.6 ↑ Suc.1 ↑ Pen. ↓ Nft Suc.6 ↑ Suc.1 ↑ Pen. ↓

2

0.1 65.6 97.5 15.2 1 65.9 97.2 15.3
0.5 63.4 96.8 15.2 3 63.4 97.1 15.1
1.0 65.9 97.2 15.3 5 66.2 96.9 15.2
2.0 65.9 97.2 15.3 10 65.3 97.5 15.3

4

0.1 75.9 97.1 13.1 1 76.8 98.4 13.0
0.5 77.1 97.2 13.1 3 75.9 97.8 13.0
1.0 76.8 98.4 13.0 5 77.5 97.5 13.2
2.0 77.2 97.2 13.2 10 75.9 97.5 13.1

8

0.1 79.4 97.8 12.2 1 80.3 98.7 12.3
0.5 76.8 97.8 12.1 3 76.5 98.4 12.2
1.0 80.3 98.7 12.3 5 78.8 98.1 12.2
2.0 78.7 97.5 12.2 10 80.0 98.1 12.2

Impact of different hyperparameters. A comprehensive
analysis of different hyperparameters (i.e, regularization
weight β, number of finetuning Nft every epoch, number
of timesteps T ) to the performance during preference align-
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Figure 8. The effect of different sampling steps on grasping per-
formance. The red solid line represents the grasping success rate,
while the black dashed line denotes the time consumption.

ment is reported in Table 5 and Fig. 8. Table 5 demonstrates
that when the sampling time steps is relatively small, such
as 2 or 4 steps, increasing the number of finetuning itera-
tions Nft and raising the value of the regularization coeffi-
cient β can enhance the model’s performance. Conversely,
when the sampling steps is larger, employing fewer Nft and
a smaller β value helps maintain the model at a high perfor-
mance level. Fig. 8 shows that as the number of sampling
steps increases, the grasping performance first improves and
then declines. The highest grasping success rate is achieved
when the sampling step is set to 16. The potential reason is
that during the multi-step sampling process, each step intro-
duces minor errors in noise handling. These errors may be
masked in early steps but accumulate over time, eventually
degrading the sample quality.
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